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ABSTRACT

This thesis is concerned with an empirical Bayes procedure and its

application to communication theory. The communication problem is one

in which a sequence of information bearing signals is either assumed

to be a stationary random process or distorted by a stationary random

process. In either case, the underlying probability structure is un-

known. The message sequence is then added to correlated gaussian noise.

The statistical inference problem is to extract information from each

member of the observation sequence, i.e., make a decision as to the

presence of a particular signal. The empirical Bayes procedure utilizes

all past observations to obtain consistent estimates of the unknown

distributions or related quantities. These estimates are then used to

form a sequence of test functions which is evaluated using only the

present observation. It is shown that the sequence of test functions

converges to the test function one would use if all distributions were

known and if the observations were independent. For a minimum probability

of error criterion, the resulting difference in error probabilities

is dominated by a quantity proportional to the mean-square error in the

estimate of the test function.

In particular, we consider the class of problems where the marginal

density function of an observation is the convolution of a gaussian den-

sity function and an unknown distribution, f(x) = Ig(x-z;_)dG(z). By

suitably interpreting G(z), a variety of communication problems are in-

cluded. Much of this study is concerned with obtaining consistent

estimates of f(x) given the sequence of dependent, identically distributed

random variables Xi=Ni+Zi, i=l,...n. Three techniques are presented:

a kernel method which is similar to the procedure used for estimating

a spectral density, an orthogonal expansion for f(x) in Hermite functions,

and an eigenfunction representation obtained by solving an eigenfunc-

tion problem associated with the integral equation for f(x). For all

three methods, we calculate the bounds on the mean-square error in the

estimate of f(x). A typical result is: if the autocorrelation func-

tion of the gaussian noise is absolutely integrable and eventually

monotonically decreasing, and if the sequence Z i is M-dependent, the

rate of convergence of the estimates is the .same as in the case of in-

dependent observations. The rate is O(1/n4/5)-" for the kernel method.

For the orthogonal, _,ex°ansi°n, with the r-th absolute moment of Z finite,

the rate is O(i/n_r-2)/r). With the eigenfunction representation, we

estimate a quantity related to f(x) and obtain the rate O(in2n/n). The

techniques are then extended to the case of estimating a k-variate den-

sity function f(xl...Xk).

xi
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These results allow us to bound the rate of convergence of the risk

incurred using the empirical procedure in a number of communication prob-

lems. The problems considered are: communication through an unknown_

stationary, random channel when learning samples (channel sounding signals)

are available, communication through an unknown random multiplicative

channel, and the transmission of known signals with unknown a priori prob-

abilities.

xii



CHAPTERI

E_TRODUCTION

1.1 INTRODUCTION

This thesis is concerned with a class of hypothesis testing prob-

lems in which not all pertinent statistics are known, but where the ob-

server is repeatedly faced with the same decision problem. The type of

problem we want to discuss is one in which a sequence of information

bearing signals is assumed to be, or distorted by, a stationary random

process whose underlying probability structure is unknown. The message

sequence is then added to correlated gaussian noise. The statistical

inference problem is to extract information from each member of the ob-

servation sequence, i.e., make a decision as to the presence of a par-

ticular signal. The empirical Bayes technique which we shall discuss

involves the use of accumulated past observations to obtain consistent

estimates of the unknown distributions or related quantities. These

estimates are then used to form a sequence of test functions which con-

verges to the test function one would use if all pertinent distributions

were known and if the sequence of observations were independent. These

remarks are perhaps best clarified by a simple example.

Suppose we have an observation X=N+Z, where N is a gaussian ran-

dom variable with mean zero and standard deviation equal to one. Z is

assumed to a random variable which takes on the values 0 and 1 with prob-

ability Po and pl=l-Po, respectively. We take Z independent of N.

1
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Designate the distribution of Z by G(z) and let the gaussian density

with a standard deviation equal to i be denoted by g(x]l) The den-

sity function of the observation X is then written.

f(_)--Ig(_-z;l)d_(z)

== pog(x;l) + plg(x-l;l)

(l.l.1)

We want to test whether Z=O or i with a minimum probability of

error criterion. The optimum test procedure is known to be a likeli-

hood ratio test with a threshold of one. Using the logarithm of the

likelihood ratio, an equivalent procedure is to evaluate the function.

\Pk " (1.1.2)

= X-C,

and compare it to a zero threshold. The test procedure which minimizes

the probability of error is to choose HI (Z=I) if T(x)_O and Ho if T

(x)< O. Let G(x) denote the cumulative gaussian distribution function.

Then, the probability of an incorrect decision is given by

Pe = Pl G(c-l) + (l-Pl)(1-G(c)). (1.1o3)

Pe as a function of Pl is called the Bayes envelope function and is the

minimum probability of error attainable. A plot of this function is

given in Figure io

I
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!
Suppose Pl is unknown and that we have a "good" estimate which we

I denote by _i" Then_ we might use the test function

A
A fl-pl

| _T(x) = x-l12+ 2i_ j (i.i.4)

I and compare this quantity to a zero threshold. The reason for this is

A

I that if _i is close to Pl, T(x) ought to be close to the Bayes test

function T(x). This is in fact the case as can be seen by calculating

! ^
the probability of error as a result of using T(x). Defining this prob-

I ability of error as P(_l, Pl ) , a straightforward calculation yields

P(pl,Pl ) = PiG(c-l) + (i-Pl)(l-G(_). (i.I.5)| ^ ^

A plot of P(Pl, Pl) versus Pl for different values of Pl is also given| ^ ^

I in Figure i. 1.o - -_i-_

PorP _ /

i e en 8

A

!

I .2 _/_Bayes envelope _ ^ -

/_ "function" "_ P i='_

II " , , , , ", _<:
.2 .4 .6 .8 1.0

! Figure i. Probability of error vs. Pl"

!
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Now assume we are repeatedly faced with the same decision prob-

lem; we observe the sequence of stationary random variables X_,_=l,2,...

n, and for each observation X_ we are to decide whether Ho or HI is the

true state of nature. Prior to making a decision based on the observa-

tion Xn, we would use Xn to update the estimate of P.I"

a convenient estimate of Pl is

/I

BIn = i_ 7. X! (1.1.6)
n_= I

p^
Since Pln^ is a function of the observations, (pln, pl) is a ran-

dom variable. We define the average value of P(_In,Pl) by
A

Pen = E[P(Pln,Pl) ]. (1.1.7)

For the above procedure to be useful, we should have

lira Pen = Pe' (1.1.8)
n_

That is, on the average, as the number of observations (and decisions)

increases, the probability of error Pen should approach Pe. An estimate

of how close Pen is to Pe as a function of n would also be of value.

^

In the next section we will show that for (8) to hold we need Pln

1 ^
converging in probability to Pl. We also show that if pl n converges

in mean-square to Pl, a knowledge of the mean-square error provides a

bound on the difference Pen-Pe.

For this example,

iWe will refer to equations within the section by the last index.

referring to an equation in another section we will use all three

indices.

In

I
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A

Let us calculate the mean-square error for the estimate pln o

Using (i), we see that the estimate is unbiased

I A

E[P } -- p
_n _ (1.1.9)

I Assume the sequence of observations [X_] is independent° Then;

I

I
I

I

the mean-square error is

A e A l+pl (1-Pl)
E (P_n-h) = V(P_n) = (lol_lO)

n

A

The estimate P
in

converges in mean-square at the rate 0(I/n) .I

If_ on the otherhand_ we assume that the gaussian noise samples

are correlated, E(N_Nm) = Pm-_' we have

V(P_n ) = l+p_(1-Pl) + 2 _ 0
[ _7_ m-_

I

|
I
I

I
I

I=l m:_+l

(io io ii)

From the stationarity assumption_ we can write

n

V(#in) = l+pl(l-Pl)n + £2 _ (!- nT) OT (i.1.12)

T=l

Assuming the correlation coefficients 0T are absolutely summable_

oo

T=l

< _ (1.i.13)

we have

I

I
iWe use the standard big 0 notation to write V( p̂ln )=0(i/n)_ which is
taken to mean that there is a constant a for which V( p̂ln) =< a/n.

I
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n

V(p_) -_z+PI(Z-P_.)+ _ Ip_-I
n n

.i*=i * (z.z.z4)

_l (z+p_(z-p_)+2B2).
n

A

Hence, if (13) holds, Pan converges in mean-square also at the rate

O(l/n).

Now, for the case of independent samples, T(x) as given by (2) is

the optimum test function; the test procedure using (2) results in the

A

minimum probability of error, Pe" Then, using pl n in (4) we have

ATn(X) = x _ 1/2 + 21n . (i.i.15)

\pan /
A

If, as a result of using Tn(X), Pen converges to Pe, we say the se-

quence of test functions is asymptotically optimal. This definition

1
was introduced by Robbins [30].

When the sequence of observations is dependent we will still use

A

the test function given by (15). With V(P_n)=O(1/n), we would expect

that _n converges to Pe at the same rate as for the case of independent

observations. Now Pe is no longer the minimum probability of error at-

tainable since we do not base the present decision on all past observa-

tions. We do_ however, use all past observations to form an estimate

of T(x). For this case, we shall call T(x), as given by (2), the ''op-

timum one-stage" test function. We will be concerned with the conver-

A

gence of Tn(X ) to this one-stage test function. Clearly, the one-stage

1Numbers in square brackets refer to references listed at the end of

the report.

!
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test can be modified by basing a decision on a specified number of ob-

servations. Then, at the expense of increasing the number of hypoth-

eses to be tested, the probability of error would tend to decrease. In

general, this procedure is still suboptimum. We do not discuss it further.

We have called the learning and test procedure an empirical Bayes

procedure because the decision problem is one of making an inference

concerning the presence of a random variable (or process) Z which is

distributed according to some a priori distribution _(z) and which we

will take as unknown. With dependent observations, which is the case

we will study 3 the procedure is neither an optimum (Bayes) nor asymp-

totically optimum procedure.

We now generalize the above problem and establish bounds on the

convergence of Pen to Pe o

1.2 THE EMPIRICAL BAYES PROCEDURE

We let the parameter h represent the hypothesis in effect when

1
the random variable X is observed, k takes on the values "0" and "l"

with probability Po and p1=l-Po, respectively. The observed random vari-

able X is governed by the density function fi(x) when A=i,i=O,1. The

density function fi(x) will, in general, be the convolution of a gaus-

sian density and some distribution function.

density function of the observation is

f(x)

The marginal, or overall

-- polo(x) + plf1(x) (1.2.1)

lln this formulation, and in the proof of asymptotic optimality for in-

dependent observations, we follow Robbins[30].
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The choice of deciding between the two h_potheses is made by a

decision function t(x); t(x) is defined on the space of observations

and takes the values 0 or i_ according to which hypothesis we believe

is active. A loss function L(t(x),h) is also defined as the loss in-

curred when we make the decision t(x) and h is the true parameter° We

take the loss of a correct decision to be zero_ L(0_0)=L(I;I)=0_ and de-

fine

I
T,(l,O)= _o> o,_(o,i) = a_ > 0.

Letting b(k) = L(0,h)-L(l,h), we can write the less incurred by using

t(x) as

L(tCx),h) : L(O_h) - t(x)bCh)o (io2o3)

For any decision t(x)_ the expected loss as a function of the parameter

h is

RCt,h) = .f LCt(x)_k)fh(x)dxo (i_2o4)

x

The expected or overall risk is defined as

R(t, ._)
P

: / R(t,h) d;c(h)
,j
h

: if L(t(xl,h) fh(xldx(h)

Ax

iWe will carry ao and a! along in the development even though we are

interested in a minimum probability of error criterion, for which ao

= aI =io
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where _(h) is the distribution fork. We can write the expected risk in

the form

R(t, _) = Plal - ft(x) [Plalfl(x) - Poaofo(X) ]dx. (1.2.5)

x

If we denote the test function T(x) by

T(x) -- pla/1(x) - poaofo(X), (1.2.6)

then (5) becomes

R(t,_) = P_al" /x t(x) T(x) dx, (1.2.7)

and the procedure to minimize the overall risk is to choose

tB(x) = 1 if T(x) -_0

= o if T(x)<o.

(1.2.8)

The decision function defined in this manner is the Bayes decision func-

tion (with respect to the distribution _), and the Bayes (minimun) risk

is R(tB,_) = Pla- fT(x) + dx, (1.2.9)

+
where T(x) = T(x) if T(x) > 0 and 0 if T(x) <O.

Now suppose that the test function T(x) is unknown and that we are

repeatedly faced with the same decision problem. (Both Pi and fi(x)

may be taken as unknown.) At the n-th decision, we have observed the

sequence of stationary random variables X_,_=l,2,...n, and we want to

I
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decide whether hn=O or kn=l. The values ofk_(the states of nature)

_=I_2_...n-l, may or may not be known, i.e., we may not know whether

our previous decisions were correct. We agree to use only the present

observations Xn to make a decision as to the value of hn, but we use all

past observations to determine a decision function tn which takes on the

values 0 or i. The decision function is now defined on the space of all

past observations. We designate this decision function by tn(X ,xe_.oo

Xn) or, for notational convenience, by tn(Xn).

Let Enh n denote the mathematical expectation with respect to all

the random variables X I....Xn_n, and Enl_n denote the conditional expec-

tation given kn. With the loss given by (3), the expected loss at the

n-th stage is

R( tn, hn) = En lhn( L(tn(Xn), hn) ) (io2o i0)

and the overall loss is given by

_(tn,_) = .f R(tn._h)d_(_)

= Enzn( L(tn (Xn) ,hn) ) °

(1.2oZl)

This can also be written as

( :_o2.12)

Let Exk denote the expectation with respect to the pair of random vari-

ables (x,h). If lim Enkn{(tn(Xn)b(hn) ) ]=Ex_ [(tB(X)b(h)) ] then_ in view
n-_o

of (4)-(6), we have

I
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ii

liraR(tn,_) = R(tB_). (1.2.13)

A sequence of decision functions {tn(Xl...Xn)] such that (13) is

satisfied is said to be asymptotically optimal. This is the definition

Robbins adopte_ for the case of independent observations. We shall now

obtain a bound on the convergence of (13) and also investigate the case

where the observations are dependent.

i.2a Independent Observations

Consider the second expression in (12):

F_nCtnCXn)bC_n)) = P°Enlk=oCtnCXn)b(O)) + PIFn_ (tnCXn}b(l}}'=

In view of the independence and stationarity assumption, and the

definition of b(_), from (i) we have

and

PoEni k o(tn(Xn)b(O)) = _ aoP o f fo(Xn)
n-i n=

(....,,,(Xn_.,,dx...dXn-}
PlEn[_(nt_(Xn'b(1)'= = p a ff(x n,

tn(x_...xn) f(Xn_l)dxl...dx n d_

d_

Using the definition for T(x), we can write

En_tn (Xn)b(_n )) = f_(_n'

_f... ftn(xl...Xn)f(xl)...f(xn.l)dXl...dXn_ d,

I
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Define a sequence of test functions

1

Tn(X_) : Tn(x,x,...,X__l,X_;XD.

Tn(xn) is a function of Xn, whose functional form depends on the vari-

ables (observations) xl...x n. Suppose that for almost every fixed x

and arbitrary ¢,

lira Pr [ITn(Xl,...Xn_l,X;X ) - T(x) l < ¢_ = i, (1.2.14)

n-_

i.e., Tn(Xn) converges in probability to T(x) for almost every fixed x.

Further, define the sequence of decision functions by

tn(Xl...Xn) = 1 if Tn(Xl...Xn;Xn ) m 0

= 0 otherwise

(1.2.15)

We then have

f

Enkn(tn(Xn)b(kn) ) : iT(x)[Pr[Tn(X1...Xn_l,X;X) _m0}] dx,

and since f IT(x)Idx < _, it follows from the dominated convergence

theorem and (14) that

lira Enkn( tn(Xn) b( kn) )
rl-_oo

f

: ] _(x)liraPr_n(X ...X__l,X;X)-_0} dx
n_

= ,/T(x)+dx"

lln this section we drop the ^ notation on @n(Xn).
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Theorem 1.2.1 (Robbins [30], p. 201): With Tn(xn) such that (14) is

true and with tn(Xn) defined by (15), the sequence of test functions

is asymptotically optimal in the sense that

lim R(tn,_ ) = R(tB,n )
n_oo

Perhaps the most convenient way to obtain a rate of convergence

is to assume that the sequence of test functions converges in mean-

square to T(x), uniformly in x. Suppose that for almost every x, the

inequality

En-i [ITn(XI .Xn_l,X;x)_T(x)l}2 _ 2•. < _Bn (1.2.16)

is satisfied and that lim _n=O. I Then_ from the Chebyshev inequality,
n-_o

we have convergence in probability with the bound

2
Pr[ITn(Xl...Xn_l,X;x)-T(x)I > e ] < _n /e2

for a.e.x.

Notice that by definition R(tn,_) __>R(t B,_).

the difference in risks is given by

From (9) and (12),

0 _<_R(tn,_)-R(tB,_ ) = f T(x)+dx - f T(x)[Pr[Tn(Xi,X2...Xn_l,X;X) > O}]dx

Define T(x)- = T(x) if T(x) < 0 and T(x)-: 0 if T(x) > O. We then have

iEn_ I denotes the expectation with respect to the first (n-i) random vari-

ables, X I. ..Xn_ I .

I
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+ +

0 __ R(tn,_)-R(tB,_ ) = f T(x) dx - f T(x) [Pr[Tn(X ) _ O]]dx

- / T(x)-[Pr[T n _ 0]]dx (1.2.17)

= _T(x)+[Pr[Tn(X) < 0]]dx - _T(x)-[Pr[Tn(X ) _ 0]]dx.

Let A = [x:O _ T(x) _ c] for arbitrary positive e and consider the first

expression on the right side of (17).

_T(x)+[Pr[Tn(X) < 0]]dx = fAT(X)+[Pr[Tn(X) < 0)]dx + _AcT(X)+[Pr[Tn(X)<O]]dx

For x contained in A, it follows from the bound below (16) that

Pr[_ O] = Pr[Tn-T _ -T] _ Pr[Tn-T _ - e] _ _/e 2. Hence, the first

B_
integral in the above expression is bounded by _ IAT(X)+dx. For the

second integral, assuming a I > aO_ we have

_AcT(x)+[Pr[Tn(x) < 0]]dx _ IAcT(X)+dx

_< a_ IAc[p_f_(x)+ Po_o(x)]dx: a_pr[o < T(x) < c}

= a_51(c)

Collecting results, we have

6 2
n +

fT(x)+[Pr[Tn(x) < 0]]dx _< _ ] T(x) dx + s151(e )

In a similar manner, the second integral on the right side of (17)

is bounded by

- /T(x) [Pr[Tn(X ) _> O}]dx _<

2.

_n _ T(x)-dx + a15e(¢ )
2

6

I
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where 52(e ) = Pr[ -e _< T(x) _< 0}. We now have,

Corollary 1.2.1: Assume that the sequence of test functions T n con-

verges in mean-square ss given by (16). Then, the risk at the n-th

decision is bounded by

0 <_ R(tB,X)-R(tn_ ) <__ -- :IT(x)idx+ 5(_),
62

where_(_): _{l_(x)A< _} •

We shall now derive the same bound for the case of dependent

observations and also give conditions on fo(X) and fl(x) so that

5(e) can be made arbitrarily small.

1.2b Dependent Observations

Let: f(x_,...,Xn) denote the(n-variate) density function of the

random variables X_,_=l,...n; f(x_,...,Xn_llXn,_ n) be the conditional

density function of the first n-1 random variables given _n and Xn;

and f(xl,...,Xnlk _ designate the density furction of the variables

Xl...,Xn3 given A_. In analogy to the previous development, we have

Rn(tn,_) = Fnkn(L(tn(Xn),kn)) = Plal- Enkn(tn(Xn)b(kn)), (1.2.18)

and

E(tn(Xn)b(kn)) = PlaiEnlk(tn(Xn)) - PoaoFnlk(tn(Xn))-
n=l n=o

I
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We write the first expectation on the right side as

.,f._(x._...f

r_

F

j ... jr _o(x,..._),(x,...xnl&=_)d,,..._x_

tn( x_...x n) f( x_..-_-z Ix,_=l) dx... d_.Z_d_

The conditional density f(Xnl_=l) is written as fi(Xa). The second

expectation, Enlkn=O, iS written with fo(Xn) in place of fl(xn)

f(xl,...,Xn_llXn, kn=O) in place of f(xl,...X:n-llXn_n=l) •

and

I
b

1

I

i

I
I

Using these expressions in (18), the empirical risk becomes

n-1

R (tn,_) = Plal" _.f Plalfl(Xlq)If .-..f t_q(xl. ••x_l)

f(xl...Xn.llXz, kn= l) dx i. •dXn-l_ dXn
n-1

-fPoaofo(X_)Ef...ftn(X_'''_)f(xl'''_-llXn'h_=O)dxl""

and upon using the definition of T(x), the risk is expressed as

n-1

R(_,,O = pl a

f(xl" ..Xn_llXn=X,km=l) dx I. ..dXn_l_ dx

n-1

.i [.i... _-i l=n=X'_ _°)

( I. 2.19)

I
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To demonstrate convergence, in contrast to (14), we now need to

require convergence in probability conditioned on the n-th pair of

random variables xn and kn,

lira Pr_Tn.(Xl...xr__l,X;X)- T(x), < _ ,Xn=x,_n=_ _ =

O, i = 0,i. (1.2.20)

Clearly, this is satisfied if we have (conditional) mean-square conver-

gence for a.e.x,

I_ -.).oo _.= •

lim J_... /(Tn(Xl... Xn_l;X;X) - T(x)) e
n-_oo

f(x_...__ll_=x,_=i) dx_...d__l--

O, i = 0,i. (1.2o21)

This condition, howeverj is difficult to verify. Under the assumption

that the marginal density functions Pifi(x)_ i=O,l, do not equal zero

for almost all x_ (21) is implied by the inequality

En(Tn-T) e = ,/.-../(T_(xl'''Xn-i,Xn;X_) - T(Xn))ef(xl...x n) dx l...

dXn <-_r_ (1.2.22)

where lim Yn=O. This average is considerably easier to obtain°
n_

Then, it is easy to see that the empirical risk converges to the

risk incurred by using the one-state test:

I
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lira R(tn,_) = plal - fT(x)lim Pr_Tn(Xl...Xn_l,X;X ) -_ 01

[_

x_dx .f T(x) +dx=R(_)kn = 0, Xn = = plal - tB,

To get a rate of convergence, we proceed differently than in the

independent case; the reason being that the bound in (22) does not

imply a useful bound for (21) and (20).

From (5), we have

R(tB,_ ) = plal- Exk(tB(X)b(k)) ,

and since R (tB,_) depends only on the present pair of random vari-

ables (Xn, kn) , we can write the difference of (18) and R(tB,_) as

0 -_ R(tn,_) - R(tB,_) =

Enkn(b( _)(tB(X n) - tn(Xm...Xn))). (1.2.24)

Since b(k) is s bounded function and assuming at> ao, (24) is dominated by

0 -_R(tn,_) - R(tB,_) -_ alEnltB(Xn) - tn(Xl...X _) I. (1.2.2.5)

The functions tB and tn take on the values O or i. Hence, the contri-

butions to the expectation are the two cases where tB_t n. We have,

from (8) and (1.5),

0- _ R(tn,_)- R(tB, _)-_ a I Pr_n(Xl_(e,...Xn;Xn)• 0 , T(Xn)< O_

+ al P_n(Xl,Xe...Xn;Xn)< 0,T(Xn)-_ 0_.

I
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Let e> 0 be an arbitrary constant and consider the first expres-

sion on the right side:

Pr_n _ O_ T < O} =

<T<O}

Assuming (22) holds, we have

PrCTn 9 O; T <- _< Pr _Tn-T'-_ _-_ 7n2/c 2.

Letting 81 (e)=Pr{£ < T(x n) < 0_, it follows that

Hence, we have

Pr _n>O_T< O_-< _n2/C2 + bz(¢).

In a similar manner; we can show that

_n < o} 2 , 2 62
Pr O_T => -_7n /e + (_)

where 5 (e)=Pr_> T(Xn) -_0_. Then, setzing 5(e) : 5!(e) + 52(e) =

* 5( o (1.2.26)
o - R(t_,_)-R(tB,_:) -_a.,__ 2
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To show that 5(¢) can be made arbitrarily small, it is sufficient

to assume that the density functions fo(X) and fx(x) are linearly inde-

i
pendent, and in addition, they are analytic functions of x.

The linear independence assumption is not unreasonable since, if

the density functions were linearly dependent, one could not distin-

I

I

guish between the two hypotheses. The analytic assumption is more

then we need, but in the cases we are interested in this assumption will

always be met; fi(x) will be the convolution of a gaussian density

I

I

(which is analytic) with some distribution function.

These two assumptions imply that the roots of T(x) =0 are isolated.

For if T(x)=0 in some interval then, since T(x) is analytic, T(x) is

I
I
I

I

identically equal to zero. This violates the linear independence as-

sumption. Now, since T(x) is continous, it follows that for any spe-

cified 8, we can choose an ¢ such that the probability of the set A=A

This gives the desired result

We collect our results (and assumptions) in

I
I
I

I
I
I

Theorem 1.2.2: We observe the sequence of stationary dependent random

variables X ,_=l,2,...,with the marginal density function

f(x) = polo(X) + p fl(x).

Assume that a sequence of test functions, Tn(xl,xa,...Xn;X n) exists

which satisfies (22),

1By linear independence we mean that there does not exist two non-zero

constant Co, c13 such that Cofo(X) + clfi(x) = 0, a.e.x. (Since the

fi are densities, linear dependence is equivalent to equality.)



I

I
I
I

I
I

I
I

21

_n([_n(X,..-X_;X_) - _(X_)I _) -- _, ,

and lim 7n =0.
-n-_

Define the sequence of decision functions hy

tn(Xl,...x n) = i if Tn(xl,xe,...,Xn;Xn) -_0

= 0 otherwise.

If Pifi(x)_O, for a.e.x, i=O,l, the empirical risk converges to the risk

incurred using the one-stage procedure. In addition, if the density

functions fi(x), i=O,l, are linearly independent and analytic functions

of x, the difference in risks at the n-th decision is bounded by

!
0 _R(t n,_) - R(t h,_) _ a/2 7n2 + 5(c_.

! \ - -;2E 2

I

!

is an arbitrary positive constant and 5(¢) can be made arbitrarily

small by a suitable choice of ¢.

We will have the occasion to consider a test function defined as

I

I Since s(x) will be a positive function, the decision function

(1.2.27)

I tB(x) = 1 if T(x) -_ 0 (1.2.28)

I = 0 otherwise

I
I

I

is identical to _B(X). Hence, the risk using this equivalent test,

R(tB,_), is equal to R(tB,_ ).

For the empirical procedure, we will then take
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Tn(X n) = S(Xn) Tn(x n) (1.2.29)

as the estimate of T(x) and define the decision ±_c_ion" _--u_

7n(X n) = i if s (Xn) Tn(Xn) -_ 0

= 0 otherwise. (1.2.3o)

Letting R(_n,_ ) denote the risk of this procedure, we have

R(_n,_ ) = alP I - Enhn(t_n(Xn)b(kn)). (1.2.21)

The difference in risks is

0 < R(_,_)- R(tB,_ ) = EnXn_)(tB(Xn) t<(Xn))_

i B
(1.2.32)

Then, by a proof which is identical to the previous theorem, we have

Corollary 1.2.2: Assume that the sequence of test functions satisfies

En _2(Xn) (Tn(Xl...Xn;X n) T(Xn))_ -< (yn/) 2
(1.2.33)

and that lim y'=0. Assume further that the density fum_ctions fi(x),
n_ n

i=0;l, are linearly independent and that the functions s(x) fi(x ); i=

0, i; are analytic functions of x. Thenj the difference in risks at the

n-th stage is bounded by

0 -_R({}{#_) - R(_B, _) < a Y___n + b'(c) (1.2.34)

I
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where 8'(¢)= Pr_s(x)T(x)[<c-_ can be made arbitrarily small by suit-

able choice of E.

Similar results can be obtained for any equivalent test procedure.

By an equivalent procedure we mean a test function Te(x) such that for

every x, Te(x)_ 0 when T(x)_ 0, and a decision function t(x) which

equals one when Te(x)_ 0 and zero otherwise. In view of (32), a bound

on the difference in risks, analogous to (34), can easily be obtained.

These remarks can be extended to the results of the next two sub-

sections. Since the extension to equivalent tests is straightforward,

we will not discuss them further in this chapter.

1.2c Extension Of The Dependent Case To Multiple Hypotheses

C
Let the parameter ktake on the "values" _.=_ko,kl,...kk_-

Again,

k designates which hypothesis is active. We take Pi as the a priori

probability of the i-th hypothesis, 7 Pi=l, and fi(x) as the density

function of the observation given that k=k i.

A test procedure is equivalent to specifying (K+I) decision func-

tions ti(x), i= 0,1,...K+I, defined on the space of observations such

that if, for a given x, ti(x)=l we announce ki and if ti(x)=0, we do

not announce ki. Clearly, we have _. ti(x )=i, for all x.

If we take the loss as 0 for a correct classification and equal

to i if we are in error then, assuming that k=kJ, the loss is (l-(tj

I
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(_)).i The expected loss, given that _:Xj, is

+oo

R(tj, _) = f (l-tj(x)) fj(x) dx

--00

and the overall loss, or expected risk, is

+Qo

j=o

K _

l_ fp .f
j=o

We prefer to write this as

(l-tj(x)) fj(x) dx d_(_)

R(t,_) = i - Po -

tj(x) fj(x) dx.

K +co

f f
--00

j=o

tj(x) Tj(x) dx,

where the test functions Tj(x) are defined by

(1.2.3))

(1.2.36)

(I. 2.37)

Tj(x) = pjfj(x) - Pofo(X), j=O,I,...K. (1.2.38)

The test procedure given by

tiB(X ) = i if Ti(x) -_Tj(x), all j (1.2.39)

= 0 otherwise,

1

We can think of t¢(x) as the probability of announcing k=kj when we

observe x. (l-tjtx)) is then the probability of an error given that

k=kj.

I
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minimizes the probability of error. The minimum probability of error

is then

R(tB,_ ) = i - Po

1 - PO -

K

Z_tj(x)Tj(x) dx,

j=o

K

_ /Aj Tj (x)dx"

j=o

where Aj=Aj_: Tj(x)-mTi(x), i=o,i,...5.

When the test functions are unknown, we suppose that we can find

a sequence of functions Tjn(Xn) which satisfy

E_(ITjn(X1...Xn_I,Xn;X n) - Tj(Y_) 12) -_ 7Jn ,j=o,l,... (i. 2.40)

We then define the sequence of decision functions:

tjn(xl...Xn) = 1 if Tjn(Xl...xn;x n) _ Tin(X_...Xn;Xn), all i,

= 0 otherwise. (1.2.41)

With fj(xl,xm,..._x n) denoting the joint density function of the

n observations given that the n-th kn is kn:kjn, the expected risk is

K n

R(tn_ ) = i- _, pj f... /tjn(Xl'''Xn)f_J(Xl'''Xn)dX:l''dx .n

j=o

The difference in risks is expressed as

0 _ R(tn,_) - R(tB,_) =

K

j=o

n

Pj f... f(tBj(xn)- tjn(X_...Xn)).

fj(x1...Xn) dx_,..dx n (i. 2.42)

I
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K

Clearly_ pjfj(xl,..._x n) -_ _. Pifi(xz,...x n) : f(x ,...Xn) _ and hence_

i=o
(42) is dominated by

K

0 -<R(tn_) - R(tB,_) _- _. EnJtBj(X n) tnj(Xz...Xn) j (1.2.43)

j=o

Let the subscript i in the following expressions read "for all i/'

and the subscript k mean "for some k." The joint event ((Tjn(Xl...Xn;

Xn) _ Tin(Xl...Xn;Xn) for all i),Tj(Xn) < Tk(X n) for some k)

ten as (Tjn__> Tin, Tj < Tk).

The expectation inside the summation of (43) becomes

is writ-

EnltBj(Xn_ ) - tjn(Xl...Xiq) I =

+

_j _ T.n_T. < Tk}
Pr n - l j

Pr n < Tkn _Tj -

Consider the first probability expression on the right side. Since

the event (Tjn_ TincT j < Tk) is included in the event (Tjn _ Tkn_ Tj

< Tk) _ the first probability expression is dominated by

Cj _ Tk_-< _ > Tkn;T j < T kPr n - Tin, Tj < - Pr jn-

-_O'Tj - Tk -< - cJ 0= Pr jn - Tkn

+ Pr jn Tkn- - Ejk g _k

where Cjk is an arbitrary constant. If (Tjn Tkn _ O) and ((Tj- Tk)

- Cjk)then the expression (iTjn- Tkn- Tj + Tkl _Cjk) holds. There-

fore_ it follows that

I
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F

Pr _Tjn - Tkn _ O_ T.j - Tk _ - ejk _

Pr jn _kn - •

Defining 51jk = Pr _jk < Tj - Tk < O_ _ we have Pr_n - Tkn__..._

_jk < Tj - Tk <_ dominated by 51j k in analogy to the previous

development. We then have the bound

Pr{Tjn -_ Tin,T j < Tk}

-_ Pr_Tjn - Tkn - Tj + Tkl -_Cjk_ + 51jk

which_ in view of (40) and the Minkowski inequality, can be dominated

by

_j _ < Tk _ _ (7jn + 7kn)Pr n - Tin'Tj
_J

_jk

Similarly, we c_n show that

2

+ 51jk. (1.2.44)

Combining these bounds, we obtain

__ (_jn + 7kn)2

2
jk

+ 5!jk.

where

EnltBj(Xn) - tjn{X _...Xn) I =< 2(Tjn + 7kn )a

Cjk

+ bjk(_jk)_

5jk = Pr _Tj(Xn)- Tk(Xn)I < Cjk_ "

I
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In analogy to Theorem 1.2.2, we have

Corollary 1.2.3: We observe the sequence of stationary dependent ran-

dom variables Xg,_= 1j2,...,with the marginal density function f(x) =

7. pjfj(x). Assume that the sequences of test functions n(Xl, X2,...

j=o n)_Xn;X , j=oj1,...K3 satisfy

2

En(Tjn - Tj) 2 _- 7jn , j=o,1,...K. (1.2.4-5)

and that lim 7in=0 , j=O,I,...K.

At the n-th decision, define the (K+I) decision functions by

tj(x 1...,xn) = i if Tjn(X 1...xn;xn) -_ Tin(X l...xn;x n), all i

= 0 otherwise_ j=0,1,2j...K.

Then, if Pifi(x)_a.e.x, i=O,l...K, the empirical risk converges to the

risk of the one-stage procedure. If the density functions fj(x), j=O,

I,...K3 are linearly independent and analytic functions of x, the dif-

ference in risks at the n-th decis_ion is bounded by

0 _-R(tn,_) - R(tB,_) _- _. 7j_ + 7kn)

j=0 ¢ Jk2

where again 8jk can be made arbitrarily small.

1.2d

2

+ 8jk(g jk)_

Convergence of The Empirical Procedure For Unbounded Loss Functions

The fact that the loss function ((2)) is bounded has been used to

considerable advantage in obtaining the above bounds. Situations where

L(t(x),h) may not be abounded function of h occur when we let k(the

state of nature) take on a continuum of values. We assume that h is a
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random variable drawn from some general papameter space A. With k dis-

tributed according to the distribution G(A), the density function of

the observation is written

f(x) : Sf_(x)d_(_). (1.2.47)

The hypothesis test we consider is one in which we infer from the

observation X whether k_A (hypothesis Ho) or AeA-A (hypothesis HI).

To obtain the Cone-stage) test procedure, we again let t(x) = O,

i, depending on whether we believe Ho or _ is in effect. Defining

b(k) = LCO,k) - LCl,k) (1.2.48)

and

T(x) -- Sb(R) fR(x)d_(R),

A

the risk incurred is a minimum if we choose

(1.2.49)

tB(x) = 1 if T(x) _a 0

= 0 otherwise. 1

The risk is then given by

R(t_,_) = .$L(0,k) d_(k) -ST(x)+dx

A

(i.2.50)

lsee Robbins [30], section 3, for the details.
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which we can also write as

R(tB,CZ ) = _L (O,_)d_(h)- FxX_B(X)b(_) _ • (1.2.51)

When the test function T(x) is not known, we define a (two-valued)

decision function tn(Xl...x n) as before. The overall (empirica_ risk

is

R(tn,CZ) = _A L(0_h) dg_(h) - Fnkn_n(Xl'''Xn)b(An) _

and the difference in risks can be written as

(1.2.52)

If we assume

0 -_ R(tn,G) - R(tB,G)

= Enhn_k n)(.tB(xn) -tr_(Xn))_

2(X)d_(_) -_c <

then by the Schwarz inequality it follows that

0 _- R(tn, G) - R(tB,G)

-_ _En_B(X n) - tn(X_..Xn)_ I(2

(1.2.53)

(-1 .2.54)

satisfies

The value of the expectation in (55) is identical to the value of

expectation appearing in (25). Hence, we obtain

Corollary 1.2.4: Assume there exists a sequence of test functions which

(1.2.55)
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G 2]2En_ (Xl...Xn;Xn) - T(Xn)) _- 7n •

Then_ if the decision function tn(Xn) is defined as

tn(Xn) = i if Tn(xn) -_0

= 0 otherwise,

and if (54) holds, the difference in risks at the n-th stage is domi-

nated by

0 -_ R(tn,C_) - R(tB,CZ)

< cl/2__7_ 2 _)_/'2.
- __ + 5( (i. 2.56)

Observe that the bound is of order 7n while the previous bounds on

the risk were of order 7m2. This is a direct result of the boundedness

of b(%) for the minimum probability of error criterion and the fact that

the sequenceL%_may be dependent.

#---- _

We have assumed throughout that each decision is based on a single

observation. The extension of the above results to more than one sample

per decision is straightforward.

1.3 LITERATURE SURVEY AND SCOPE OF THE PRESENT STUDY

We have investigated the convergence of a particular empirical pro-

cedure to what we have called the optimum one-stage procedure° By

dominating the mean-square error_

I
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E n x_... Xn_X_)- T(x_))_ -__ ,

we are able to bound the rate of convergence of the empirical risk°

A

Hence_ the central problem is to find a sequence of estimates Tn(Xl,...

Xn;Xn) which is consistent, i.e. _ lim 7_=0. This is our major concern.

Consider the two hypotheses problem with a minimum probability

of error criterion. For this case, T(x)=p f (x)-Pofo(X). Assume that

Po is known and that the densities fo(X) and f (x) are unknown. To
1

estimate T(x)3 a natural procedure would be to first estimate the den-

sities and then take

A A A

Tn(X) = P_fl (x) - Pofon(X) (I.3.i)

A

as the estimate of the test function for the n-th decision. If f
:l.n

A

and _on are consistent estimates then the sequence Tn(x) will also be

consistent. The manner in which the estimates are obtained depends on

whether "learning" samples are available.

If one can classify an observation with probability one, it is

called a learning sample. Then, if the observation is known to come

from, say_ hypothesis Ho_ we would use it to update our estimate of

fo(X). This type of operation has sometimes been called supervised

i
learning or learning with a teacher.

lln the context of communication problems3 learning samples are pro-

vided by periodically injecting a known fixed sequence into the sequence

of information bearing signals_ i.e., channel sounding signals. See

[35,36]. Learning samples of a different nature occur in problems such

as statistical weather prediction. Based on some observational data_

an inference is made about the future weather. At some later time we

find out if the inference was correct. This knowledge would then be

used to form better inference procedures.
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When learning samples are not available, the problem is more dif-

ficulto Since we never know from which population the observation is

drawn_ we can not directly estimate the desired quantities. One pos-

sible procedure is to estimate the overall density functionl f(x) =

Pofo(X) + plfl(x), and then attempt to extract from this estimate the

parts that are unknown and that are needed to form the estimate of the

test function. This mode of operation has been called nonsupervised

learning or learning without a teacher. We remark that learning in

the nonsupervised mode is not always possible.

When the sequence of observations is independent and if, with

either of the above procedures, we obtain consistent estimates of the

2
test function, then, these procedures are asymptotically optimal.

This is not to say that the probability of error is minimized at each

stage. This, of course, depends on what part of fi(x)is unknown; how

it is estimated and subsequently used to form the estimate of the test

funct ion.

l.Sa Literature Survey

The learning procedures most frequently investigazed are those

in which a set of parameter vectors_ -@i' i=l_o..k_ is to be estimated

_When the observations are dependent_ the procedures are in no way op-

timum. Presumably_ they are reasonable procedures to follow_ especially

when the exact nature of the dependency on the observations in not

specified_

I
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ten as f
ei

i
from the statistically related observation vectors X_,_=l_...n. Each

parameter (or pattern class) @_i is associated with a particular hypoth-

esis H i and could represent samples of a signal which is buried in noise°

The density function of the observation given that Hi is active is writ-

(xi), and the overall density function of the observation

becomes

K

f(xi) : _ p_eife_i(x). (1.3.2)

i=l

Furthermore, it is assumed that the set of patterns is initially chosen

from a known a prior distribution, pei ( ); and then held fixed for the

experiment. The statistical inference problem is to decide which hy-

pothesis (pattern class) is in effect for a particular observation X.

The criterion used is the minimization of the total probability of er-

ror.

Within this framework_ a number of authors (eog._[l_20_21]) have

investigated optimum test procedures when learning samples are avail-

able. Let Xk represent the sequence of learning samples. The_ given

the observation X9 the optimum decision rule is to compute the a pos-

teriori conditional densities

iVectors are denoted by the notation.

I
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and announce the @. for which (3) is a maximum.
-j

Braverman[5], assumes that the sequence of learning samples Xk =

X_kl,X_k2,... is independent and that the learning samples of one class

impart no information concerning the patterns of another class. Let-

ting Xk j denote the set of learning samples of the j-th class, (3) be-

comes

He takes the density function fej(X) as gaussian (f_ej(x)=g(x-ej)) and

the a priori densities P ej(), j=l,...K, also as gaussian with unknown

means and known covariance. The optimum procedure is then to use the

learning samples to estimate the means of each class and use these

estimates in the computation of the a posteriori probabilities. For

the case of two hypotheses, he shows that the difference between the

error probability of the above procedure and the error probability in

the case the patterns @ean value_ are known is approximately inversely

proportional to the number of learning samples.

Keehn[21], extends the work of Braverman by taking both the mean

vector and covariance matrix of P ( ) as unknown.
_ej

Scudder[39,40], also takes the noise and a priori distributions

as independent gaussian and investigates the problems encountered when

learning samples are not available. The optimum test procedure now
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requires an exponentially growing memory. He then looks at a fixed

memory technique similar to the procedure used when learning samples

are available, but now, learning takes place on the basis of previous

decisions which are never known with certainty to be correct.

The problem of when the optimum test procedure_ with or without

learning samples, requires a growing memory is discussed in a paper

by Spragins[42]. The optimum test procedure (an application of Bayes'

rule conditioned on an increasing number of observations) will be of

fixed memory if and only if the sequence of (independent) observations

admits a sufficient statistic of fixed dimension. The existence of the

sufficient statistic is seen to imply the existence of an a priori

distribution PSj( ) which has a "reproducing" property. Thus_ by choos-

ing an a priori distribution which has the reproducing property, a num-

ber of authors (e.g.[3,21]) are able to obtain optimum fixed memory

procedures.

Hancock and Patrick[17] provide for a general formulation of the

learning problem by focusing attention on the overall distribution as

given by (2). An important contribution of this study is the deter-

mination of when sufficient amounts of a priori information exists for

a learning procedure to converge. When little a priori information is

known, they apply histogram techniques to a class of nonsupervisory

problems. When the functional form of the overall density is known_

they investigate estimates of the parameters @j which characterize the

I
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overall distribution or_ as they call it, the mixture. The estimates

are shown to be consistent thus leading to an asymptotically optimal

test procedure.

Somewhat related_ but less general in formulation, is the work

of Cooper and Cooper[9]. They consider the two-category problem with

particular emphasis on the case where the overall density is the sum

of two gaussian densities. Taking each hypothesis equiprobable_ they

discuss different estimates of the unknown means which are then used

to form an estimate of the test function. They extend the (nonsuper-

visory) results to multivariate gaussian densities by estimating the

parameters which characterize the optimum partition (i.e., a hyper-

plane) of the sample space. Also discussed is the case where the

arbitrary densities of the two equiprobable hypotheses differ only in

a location parameter.

A departure in the above formulation is made by Robbins[29-31] and

his associates [19_37], They consider only one a priori distribution,

p@( )=p(@), and take the distribution as unknown. Here, the inference

problem is to decide whether @ is contained is some set A or its com-

plement. Since the density function of an observation under either

hypothesis is the same, f(x) =#f@( x) dp( @) , every observation can be con-

sidered a learning sample even though these observations are never clas-

sified correctly with probability one. Their main effort is directed

toward showing that the empirical procedures are asymptotically optimal

I
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for a variety of hypotheis testing (and estimation) problems.

All of the above authors take sequences of independent observations.

Tainiter[44] extends one aspect of the work of Robbins to M-dependent

observations and Raviv[28] takes the '_atterns" to be a Markov sequence

with the transition probability matrix initially unknown.

Special formulations and learning procedures appropriate to certain

communication problems are given by Glaser[15]_ Price and Green[27] and

Sebestyen[41]. A bibliography emphasising the supervised mode of learn-

ing is given in [2]. A discussion of most of the approaches to non-

supervised learning is given in the recent paper by Spragins [43].

1.3b Scope of the Present Study

The present study is closest, in spirit_ to the work of Robbins.

The problems we will consider are those in which the "patterns" are

random variables. Thus, if the same pattern class or hypothesis is

active in succeeding intervals, this only means that the distributions

from which they are drawn are the same. It is these a priori distri-

butions which we will take as unknown.

In particular_ we shall consider a class of problems where the

marginal density function of a single observation can be written as

f(x) = / g(x-z; a)d_(z), (1.3.4)

with a corresponding vector equation for multidimensional observations.

g(x;G) denotes the gaussian density function with standard deviation a.

I
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By suitably interpreting _(z), we can include all the problems we are

interested in. We give the following as examples.

Let u(t) be the unit step function and define

K

_(z) : _, piu(z-yi).

i=l

Then, f(x) becomes

(1.3.5)

K

f(x) = Z pig(x-yi; _)" (1.3.6)

i=l

This represents the density function of the observation where one of K

signals is transmitted with gaussian noise added to the message. The

signals represent the values the random variable can assume.

A generalization of (5) is to take

K

_(Z) = Z Pi f u(z-y)d_i(y)

i=l

where Bi(y) represents one of K different distributions.

given by

(1.3.7)

f(x) is then

K

f(x): _ pif g(x-Y_°)d_i(Y)° (1.3.8)
i=l

Here the problem would be one of testing between K composite hypotheses

with noise-like signals.

Letting u(z-y) = u(z-si(t,_)) in (7) gives

K

f(x) = _ Pif g(x-si(t'y);a)d_i(y)

i=l

(1.3.9)

I
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This has the interpretation as the overall density function of K com-

posite hypotheses with the i-th hypothesis representing the si signal

being transmitted. The a priori probability of this transmission is

Pi. The notation si(t,2 ) is taken to mean that the signal si which,

for example, is time sampled at t, is distorted by the random vector

Z.

The difficulties we shall encounter are not in attempting to pro-

cess the observations is some optimal fashion. We have already agreed

to consider a learning procedure which, at best, converges to the opti-

mum one-stage procedure_ this empirical procedure being asymptotically

optimum if the observations are independent. Our difficulties will

stem from the fact that the a priori distribution _(y) is taken as

completely unknown as opposed to assuming some known functional form

with a finite set of unknownparameters. 1

The empirical procedure we have outlined is one of estimating the

densities fi(x) when learning samples are available, and, initially,

the overall density f(x)=_Pifi(x ) when operating in the nonsupervisory

mode. Much of this study deals with estimating f(x) as given by (4)3

and establishing bounds on the mean-square error in the estimate.

There is one exception. We 81so consider (6) with the s priori pro-

babilities unknown.

I
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In Chapter 2 we consider different methods of estimating f(x).

Of particular interest is an eigenfunction representation (secti@n 2.5)

for f(x) which we obtain by solving an eigenfunction problem associated

with equation (4). Chapter 3 extends the results to estimating the

k-variate density function f(xl...Xk).

In Chapter 4, we apply our results to some problems in communication

theory. Section 4.1 considers transmission through a general, stationary,

random channel when learning samples are available. This problem serves

to relate the results of section 1.2 on the convergence oF the empirical

procedure with our results on density estimation. It also illustrates

when we can expect to obtain solutions to the nonsupervisory problem.

The remaining applications emphasize learning in the nonsupervisory mode.

In section 4.2 we consider the problem of transmission of known signals

with unknown a priori probabilities and in section 4. 3 we discuss the

problem of transmission through a random multiplicative channel. In sec-

tion 4.4 we consider a problem with an unbounded loss function.

A summary of this Study is given in Chspter 5.



I

I
I
I
I

I
II

I
i

II

It
II
I

I

I
It

CHAPTER 2

ESTIMATING THE DENSITY FUNCTION OF OBSERVATIONS--UNIVARIATE CASE

2ol INTRODUCTION

As discussed in the previous chapter, one approach to finding a con-

vergent sequence of test functions _ to first obtain a convergent sequence

of estimates for the unknown density functions. These estimates are then

used to form a test function, the structure of which is identical to the

test function one wauld use if all distributions were known° Our main

concern in this chapter is obtaining consistent estimates of the uni-

variate density function of the observations. By consistent estimates

we will mean estimates which converge in mean-square in the sense of

or

i im '_'
E [(f(x) - fn(Xi,Xa, oo.Xn;x)) 2] = 0 for every x

n_

liraE i(f(Xn)
n-_ _

f (XI_,oo oXn;X n )2]
n

= O.

2..1ol)

2_io9)

Equation (i), obviously, is concerned with convergence to the constant

f(x), while in (2) we have convergence to a random variable. It is (2)

which we need to demonstrate convergence of the empirical procedure for

the case of dependent samples.l Since, for two of the methods which we

_he convergence in (i) is essentially that required for the case of in-

dependent samples° See (I_2.16)_

42
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use to estimate f(x), there is little difference between consistency in

the sense of (i) and (2), we will evaluate bounds for both types of con-

vergence o

To compare our results with previous work in the area of density

estimation, we will also consider a global measure of the error, the mean

integrated square error,

+ oo

f AE (f(x) - fn(X1,X2,...Xn;X)) dx (2,,1,5)

--'X,

The basic problem which we want to discuss is as follows_ We are

given the stationary sequence of identically distributed random variables

(observations), X i = N i + Zi, i=1,2, ...., where N i is a sample from a

stationary gaussian process and Z i is a sample from an unknown random

process, The samples may be time samples or any other linear processing

of the received waveform which preserves the gaussian nature of the noise.

With N i independent of Zi, the univariate density function of the obser.-

vation X i is

_oo

f(x) = / g(x-z;o)d_(z), (2.I,S)

where by g(x-y;_) we mean the gaussian density function with mean value

y and standard deviation _o We want to take the gaussian noise samples

as correlated and also consider a dependency on the Z i sequence which

will be specified later,

In the next section we consider the empirical distribution function

as an estimate of the cumulative distribution of the observations,. We

I
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investigste the mean-square error and obtain a bound on the rate of con-

vergence_ The results of this section are then applied to the problem

of estimating the density function, for which we give three techniques.

The first method of estimating f(x), section 2.5, is analogous to

the technique used in estimating a spectral density. For this method,

we restrict our study of convergence to those as specified by equations

(i) and (3). This method of estimation requires a minimum of assumptions

to guarantee convergence.

In section 2.4 we consider an orthogonal representation for f(x)

and investigate all three of the above modes of convergence.

The method in section 2.5 is analogous to the technique generally

used to solve a deterministic integral equation. To the best of our

knowledge, this approach has not appeared in the literature.

The results which wewill need for the applications of the empirical

Bayes procedure are contained in Corollaries 2.4.1, 2.5.1 , and section

2°6° Section 2°6 considers a special form of _(z); the case where _(z)

contains a finite set of unknown parameters which enter linearly into

f(x)o

A summary of the chapter and generalizations are given in section

2°2 THE EMPIRICAL DISTRIBL_ION FUNCTION

We want to consider the empirical distribution function as an estimate

of the true distribution,_ For the case of independent observations, it

I
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is easy to see that this estimate is consistent with the mean-square error

going to zero at a rate 1/no For the case of dependent samples, our main

interest will be a characterization of the nature of the dependency on

the samples, or the underlying random process, for which we can still

guarantee consistency with a specified rate of convergence°

The sequence of observations, XI_X2,..oX n are identically distributed

(not necessarily independent) random variables. X i is a sample from a

stationary process which is composed of the sum of a gaussian process

with an autocorrelation function R(t), and another stationary processes

Z(t); X i = N i + Z i. With N i and Z i independent, the density function

of the observation is given by

f(x) = / g(x-z;a)d_(z), (2o2ol)
--00

with the corresponding distribution function

x

F(x) = j f(y)dyo (222)
-00

as

The empirical distribution function of the observations is defined

1

Fn(X) = n (number of X i < x, i=l,2,°.on).

Let U_(XI) = i if Xf < x, and equal zero otherwise°

as

Fn(X ) is then written

n

:_'n (x) - n U_(X,e) (2_2.3)

_=i
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With E denoting the mathematical expectation, we have

E(Fn(X)) = F(x) (2.2.4

Fn(X ) is an unbiased estimate of the distribution whether or not the obser-

vations are independent.

The mean-square error can be written in terms of a bias and variance

contribution:

E(F(x) Fn(x) f = [E(F(x) - Fn(X))] 2

+ E(Fn(x) - E(Fn(x))) 2 (2.2.5)

Since the first term is zero to investigate consistency we need only con-

sider the variance of the estimate.

The second moment is given by

E 2[Fn(x) ] _ _ u_(x_
n

=i

= ! 2
n2 U_ (X)+2 U_(X_)Um(X m

i _=i m=_+l

n n

n n2 fm

_=i m=_+l

(2.2.6)

We have defined F_m(X,X ) as the joint probability that the samples from

i
the _ and m intervals are less than or equal to x,

i
The subscripts _ and m will always mean the _ and m observations (decis-

ions, intervals, etc...) when used in a double sum.



47

F_m(X,X ) = Pr [X_ _<x, Xm <_ x] = Fm__(x,x ) (2.2.7)

We want to display the effect of the dependency of the observations on

the variance of Fn(x ). Add (l-i/n)F2(x) to (6) and subtract its equiva-

lent
n n

271 l
_=i m=2+l

The variance is

V(Fn(X)) _ F(x) (i - F(x))
n

n n

211+ _ (Fm _(x,x) - F (x)) .
n , -

_=i m=2+l

(2.2.8)

With independent observations the second expression on the right side of

(8) is zero--the variance reduces to the standard result.

Assume, for the moment, that the sequence of random variables Z i

are independent. Then, the second-order distribution is

X x

-_ -_ zz z2 (2.2.9)

where ge(nl,n2;a,pm__) is the bivariate gaussian density function with

the random variables N 2 and Nm having the _me standard deviation G and

a correlation coefficient Pm-_ = R(m-_)/R(0).I The univariate distribution

iIf we had time samples, pm_2=R{m-_)T)/R(O), where T is the time between

succeeding samples. We shall take T = i. The gaussian random variables

have the same standard deviation since the waveform in each interval is

identically processed.
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_(zi) is independent of the subscripts _ or m because of the sssumed sta-

tionarity.

It will be convenient to denote the expression in the double summation

of (8) by Dm-_ ,

Dm_ _ = F (x,x) - F2(x)m-f

X X

- oo -co Z I Z 2

dG( z2)dyz dy2 (2.2.10)

We interchange the y and z integrations((i0) is sbsolutely integrable)

and consider the resulting inner double integrals

X X

7 7 [g_(Yl-zl'Y2-Z2;a'Pm-L)-g(Yl-Zl;a)g(Y2-Z2;O)]dYl dy2 (2.2.11)

The bivariste gaussian density is expressed in terms of Mehler's

formula. From Appendix A, (A.20), with the requirement that Ipm__l < i,

_ m_ we have:

2 PJm-_
g2(y_-z_,y2-z_;O,Pm__) = g(_-)g(_)

j,
j=o

Hej(_A_ A) Hej( o )

(2.2.12)

The Hej(y/q) are the Hermite polynomials orthogonsl with respect to the

gaussisn weight g(y/°).l Observe that this is not an orthogonsl expansion

iWe use the notation g(y/g) for the gaussian density (with standard devia-

tion o) when dealing with the corresponding polynomials, g(y/°) is iden-

tical to g(y;°) which is the notation we generally use for the gsussisn

density.
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1
The arein the usual sense, polynomials defined in such a way that the

orthogonal functions are given by_Hej(y). I

Substitute (12) for the bivariate density in (ii). The first term

of the series cancels leaving

_ j x x

I " 'j =1 -_o -oo

I With Ipm Z l < i, it is easy to justify the above inversion of summation

2
and integrations. The integrals are then dominated using Schwarz's in-

equality and the orthogonality relation for the Hermite polynomials (AolO :

I /_I _I_l_
H C

I " F*_ +- l:/_

I J
< _ (2.2.__4)

Hence, (13) is bounded by

tPm__J

j=l

!Pm-ll

1 IPm,l

Dm-_ is also bounded by the same quantity,

I
I
I

+oo _oo

iSee Appendix A, section A.I.

2See Appendix A, Lemma A.Io

dG(z_)dG(z2)
IPm-il

i-IPm-*!

(2,2,15)
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Notice that (15) would still be a valid bound on Din-2 if the integrand

mn (_) were replaced by its absolute value. We shall use this later°

Combining (8) and (15), the variance of the empirical distribution

function is dominated by

V(Fn(X))

n n

ZX _= F(x)(l__(x))+ 2-- Din__
n n 2

_=i m=_+l

n

< F(x) (1-F(x)) + 2 1_ IP_l-- n _- (n-T)
_--1 l-l_l

, (2o2o16)

with the second expression following from the stationarity and with _=m-_o

Convergence in quadratic mean requires that V(Fn(X )) + 0 as n + _

For this, it is sufficient to assume that the autocorrelation function

of the gaussian noise process satisfies

R(-r) ÷ 0 as T + oo , (2.2.17)

Condition (17) excludes the possibility of jumps in the spectrum of

the noise process. It then follows (Lo_ve [24], p o 202) that

_>I

Using this fact, the second part of (16) is majorized by

Since c

n n

2 Z_n__lI_I 21Z
n

T._l

n

_Z+ O, it follows that the sequence of arithmetic means_ --
• n

_r=l

(£o2 19
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tends to zero as n + _ (Hobson [18], po 7).

Notice also that (18) is sufficient for the validity of the Mehler

formula°

With the first part of (16) dominated by i/n, we have

Theorem 2.2.1: Given the sequence of identically distributed random vari-

ables of the form X i = N i + Zi, with the univariate density function given

by

_-OO

Assume that

i)

ii)

-oo

the sequence of random variables [Zi] is independent

the autocorrelation function of the gaussian noise satisfies

R(T) +0 as _ +_

Then_ the empirical distribution function is a consistent estimate of

F(X)o Upon applying the Chebyshev inequality, and since V(Fn(X ) ÷ 0

uniformly in x; we also have uniform convergence in probability: as

i
n ÷ _ and for arbitrary e_,Pr[IFn(X)-F(x) I>_] + O, uniformly in xo

In order tc obtain a bound for the rate of convergence we need to

specify the manner in which R(r) + 0° 2 For example, assume that R(m)

is bounded by

IW e note that the hypothesis of the theorem is sufficient to ensure con-

vergence with probability one° This will be discussed at the end of the

sectiono

2The bounds given below are for time samples, with the time between suc-

ceeding samples taken as T = i.
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IR(_)I < @/T5 (2,2,20)

for ITI _> B1 where 0 < 5 < i. Then, it is not difficult to obtain

an integral upper bound for the arithmetic mean:

n n

% _ R(LAzI[< m +i
n n G2 n

T=I T=l

i

(1-5)n 5
(2.2.21)

In the sequel, we will designate (20) as condition A.

Alternatively_ we could make the assumption that

oo

f [R(t)ldt <_

0

This implies that the spectrum is absolutely continuous.

(2.2.22)

Then, by the

Riemann-Lebesgue lemma we have R(t) ÷ 0 and t + _. Assuming further that

R(t) is monotonically decreasing for Itl > B_, an integral upper bound is

given by

n

!n I% n, <

T=I

, (2.2.23)

oo

B2 = B1 +m__ / IR(t)Ldt (2.2.24)
G 2 _

B1

where we have set

The assumption of monotonicity can be dropped if the autocorrelation pos-

sesses a derivative which is integrable. Then, we replace B2 in (23) by

1 _(IR(t) l + IR'(t)l)dt (2.2.25)
B2 - G2

0

I
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This follows from the Euler-Maclaurin summation formula.

In the sequel_ equation (29) will be designated as condition B_

with the constant B2 given either by (24) or (25)°

Corollary 2o2.1: Under the hypotheses of Theorem 2.2.1 and with R(t)

satisfying condition A, from (16) and (19), the variance of the empirical

distribution function is dominated by

V(Fn(X)) < i +___2 _ + I ) (2.2°26)
- n 1-p. (l.5)n 8

Alternatively, if R(T) satisfies condition B, the variance is dominated

by

V(Fn(X)) <- 1 +- • (2°2.27)
-- n 1-D.

Note that the bound in (27) gives the same rate of convergence as

in the case of independent samples.

As easy extension of Theorem 2..2oI_ and one of practical importance,

can be obtained by replacing the independence assumption on the Z random

variables by one of M-dependenceo

Definition: The random variables Z_ and Zm are said to be M-dependent

if the variables Z_ and Z m are independent for Im-_l>M. In terms of

the distributions, we have

%__(z_,z2)_ _(z_)_(z2) for !m-_l > M,

where

!



I

I
I

I
I
I

I
I

I

i
I
I

I

I
I

I
I

I

54

CZm__(zl,z2) = Pr [Zi < zz , Zm _< z2]

The extension is carried out by noting that the independence of Z2

and Zm was first used in (9)° In general, this equation now becomes

X X

Fm-g(x'x) =_ I I Ig2(Yz-zl'Y2-Z2;_'Pm-,e)dO_m-'e(zl'z2)dym dy2

-oo -oo Z I Z 2

(2.2°28)

We use (28) in the expression Fm_i(x,x)-F2(x),'" add and subtract (9), and

group the terms so as to display the Z dependence. Designating the result-

ing expression by Din_i, we obtain

x x

Di-' = I I J:'l [g2(yz-zz'y2"-z2;_'pI-_)-g(yz-zl;(_)g(y2-z2;c)]

-oo -oo Z I Z 2

d_(.z_)d_(z_) dy_ dy2

x x

+22 ? I g2(Yl-Zl'Y2-Z2;C'Pm-')[ddZm-'(Zl'Z2)-dCZ(Zl)d_(z2))

-oo -oo Z 1 Z 2

dyz dy2 ( 2.2 ,,29)

The first term on the right is the same as before and is bounded by (15)o

The second expression is easily dominated by:

and

Dm-2 ! 2 for li-m.l < M

Dm__ = 0 for J_-mJ _ M

Using these bounds and the previous results we have

Corollary 2°2.2: Given the hypotheses of Theorem 2o2ol but with con-

dition i) replaced by one of M-dependence° Then, the variance satisfies

I
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lim E(Fn(x ) - F(x)) 2

n+oo

uniformly in x.
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= lim V(Fn(X)) = 0,

In addition, if R(t) satisfies condition A 3 we have the

V(rn(xl i _ l_-4(M-ll _ _.._ <B1 _ i _-- n 1-p. n (1-5)n (2.2.30)

With R(t) satisfying condition B, the variance is dominated by

i --.
V(Fn(x)) ! _ (i + 4(M-l) + 2 B2 )

l-p.

We now replace the M-dependence assumption with an ergodic

requirement.

Suppose that the stationary sequence [ZL} is ergodic.

(2.2.31)

Now, the weak-

est condition we have imposed on the correlation function of the gaussian

process (R(t) ÷ 0 as t ÷ _) implies that the spectrum of the process is

continuous. This, in turn, is a known necessary and sufficient condition

for the gaussian process to be ergodic. 1 Since N i and Z i are independent

it follows that X i = N i + Z i is an ergodic sequence.

We have previously defined the random variable U_ as: U_(X_) = 1

n

if X_ <_ x, and = 0 otherwise. Since Fn(X ) = U_(X_) and E(U_(X_)) e =
1

E(U_(X_)) = F(x) <_ i, we can use the Mean Ergodic Theorem([16], p. 16) to get:

lira E(IFn(X1,Xa,...X ;x) - _(x)l 2) = 0 (2.2.32)n
n_

for every x. Hence, we always have mean-square convergence to some F(x).

In addition, with the [X_] sequence ergodic, we have from Birkhoff's ergodic

iGrenander, U., "Stochastic Processes and Statistical Inference," Arkiv

fur Matematik, vol. 17, 1950, pp. 195-277.

I
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theorem ([16], p. 18):

lim Fn(XI,Xm,...,Xn;x ) = E(Fn(Xl...Xn;X ) = F(x)

n-_o

(2.2.33)

with probability one. Since Fn(x ) converges with probability one to

F(x) and in mean-square to F(x), it follows that _(x) = F(x) with proba-

bility one for every x. Thus, convergence of Fn(X) to the true distribu-

tion function is ensured under an ergodic condition on the [Z_] sequence

and the above condition on the autocorrelation function of the gaussian

process. What we do not have is a measure of how fast the convergence

takes place. We now want to find what conditions are required to charac-

terize a rate of convergence. In doing this, we will also directly

verify that F(x) = F(x) when the Z process is ergodic.

Consider the expression for V(Fn(x)) in the case the Z i are depen-

dent variables ..

V(Fn(x)) _ F(x) (i - F(x))
n

n n

+2--- I I Dm_ _
n2

_=i m=_+l

_ F(x) (I - F(x))
n

n

+ -- (n-T) DT
n _

T=l

From equation (29), DT is the sum of two terms.

has already been bounded by (15):

(2.2.16)

The first part of D T

V(Fn(X)) < F(x) (l_F(x))
-- n

n

2_ I (n-T) IPTI+ n2 1 - I_TI
T=I
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7

n

2

designates the second term of D
1- _

(2,2°34)

X X

- oo -oo Z l Z2

(2°2.35)

Perform the y integrations first and let G2 denote the second-order

gaussian distribution function°

I
I

I
I

D._,_=jr jr ca_(x-==,x-z_,<)-_(x-=,_)o(x-,.2_)]
Zl Z2

[a<( _, =_)-d_(=_) d_(=_) ,I

+ a(x-z_,_),_(x-z2, _)[d<(z_,, z2)-d_(z_)d_(z2)]

Z1 Z2

(2,2.36)

I

I

I

I

We have added and subtracted the quantity

X X

,_(x-z__o/_(x-z2_,_),_f g(y-z,._o)dyf g(y-z__)dy

in the integrando

Using our previous results (see (13)-(15)), we easily dominate the

:first expression on the right side of (36) by (2!o I/(i-Io !))o The bound
' T " 'u

I
I

I

fcr the variance becomes;

V(Fn(X)) <:,_(x) (i -F(x))
n

n

2 (n-_)
11

T'=I

!0,7!

1 I I
- ,pT_

I
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n

2y, 77+- (n-T) G(x-zl;a)G(x-z2;c) [d(_ (zl,zm)-
n2 T

T=I Zl Z2

d_(z_)d_(z2) ]. (2.2.27)

Aside from the constant 6_ the second expression is the same as (16).

Hence, if R(t) ÷ 0 as t + _, this term tends to zero. We now show that

the ergodie condition on the [Zi] sequence is sufficient to have the third

I

I

expression of (37) go to zero.

For the stationary sequence [Zn} , n = 0,_ i, _ 2,..., a condition

equivalent to ergodicity (Rosenblatt [34], p. ii0) is:

m i _ JAlim 1 P(B(IT- ) =
n+oo "n"

i j=l

I

P(A)P(B) , (2.2.38)

where A and B are any two events defined on the underlying probability

space. P(A) denotes the probability of the set A and T is the unit shift

I transformation.

I

I

I
I
I

We take the elementary points of the probability space as

= (...,__i,_o,_i,...)_ where the _i are real numbers and define the

random variable Z (_) = _ . Equation (38) holds for any measurable set
n n -

defined on the probability space. In particular, with A = [_IZnl(_ ) _ Zl} 2

T-JA is the set

Let B = [c01Zne(O)) <_ z2].

= [_IZnz(Tj_) !Zl}T-JA

[elZnz+j (e) !zl} •

The stationarity assumption gives:

I

I
P(A) : GZnl(Zl) : C_(Zl)

P(B) : O_n2(Z2) : (z(z2)

I
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P(BnTJA) _ Pr(Zn2(_J < z2, Znl,.j(ct,) S_ zl)

Define a second-order distribution function as

n
T--n

n, n l-n2 I% _ nl-n2+$

j=l

= (_nl+j .n2( zl, z2)

(2o239)

I Then, equation (38) implies

I lim A (zl,z2) = (_(Zl) _(z2) (2o2o40]
n_ _n_nl-n2

I
I

I
I

for every Zl and za and every n I and n2o

Returning to the variance expression_ designate the double integra-

tion in (57) by D :

D = _(x-z_) _Xx-_2_) [d<(z_,z2)-d_(z_)d_(_2)] (2o2._i)

z I z2

I

I

Define _he partial sum sn by

n

:_ D

Sn 'T,2

I
I

and the partial Cesaro sum S n as

n

Sn - n

j=l

S .

J

I
The third expression of (37) can then be written as

I

I

n

2 T_ 2 _ n- i_1 n-
T=l

I
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Consider _he arithmetic mean of the partial s_mr_s,

n

Sn _'- F _ ) 1 _, rdC_.(z z2)d_(zl)d_(z2)]

Z I Z2 7"_i

7rom the ergodic hypothesis and equations (38)-(40), as n ÷ _, we have

n

_[=i

for every zz and Z2o Applyi.ng the Helly-Bray Theorem (Loeve, [24], p..

183), we get that Sn/n + C as n _ :_o It then follows (see the discussion

!

I

belew (19))that the arithmetic mean of the partial Cesaro sums Sn_I/n ÷ 0o

Hen_e_ (42) and V(Fn(X)) tend toward zero as n + _o

We have just shown that an ergodic assumption on the sequence Z and

! i
s somewhat stronger assumption cn the gaussian noise implies that V(m•.n(X) _ o,,

I
Also, we are now in a position to investigate the rate of convergence..

if we were dealing with independent samples, the rate of convergence

! would be O(i/n)o For definiteness; we will consider this particular irate

i
Zlearly, if R(t) -_atisfies condition B, the second expressicn on

the right slide of (57) will be C.(i/n)_ For the third expression of (37)

! to be of the same order; the sequence of Cesaro sums, Sin, must either

I

I
I

oscillate between finite bounds cr converge°

sufficient conditions for Cesaro summabili_yo

There are :necessary and

2
For example, we have:

iWe will discuss this ass_.ption on the gau.ssian noise later°

2K_nopp, K ; _ and A_catio_ o__ Inf___=initeSeries_ Hafner rubo Co.,

..... ranslated frcm the second f_rman Edition°195C., p a_6._ _ s

I
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a necessary and sufficient condition for a series _ an., with partial sums

Sn_ to be Cesaro summable to the sum S is that the series

i)

v_O

_hould be convergent and that for its remainder

Dn = .i
n+a n=s

oo_ (n = 0,i_ .oo)

the relation

(n ÷ iii) Sn 'n
--_ S holds°

With D =_ the above conditions, in conjunction with condition

B on R(t)_ yield the rate i/no These conditions_ however., are difficult

to interpret in terms of the :g_} process° We shall content ourselves

•with a simple sufficient condition which admits some interpretation and

_hich at the same time is not an overly restrictive assumption for the

type of problems we will want to deal witho

The Cesaro method is regula:r; that :is, if _ D
T' T,_

converges to s.,

then Sn also converges to so Hence, a. sufficient condition to achieve

the :rate i/n is:

OO

D._:2

T'-I

As our final result, we have

I
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Theorem 2 2°2: Given the sequence of identically distributed random vari-

albles, X i = N i + Zi, i=1,2, .... Assume:

I

I

i) R(t) satisfies condition B

ii) _ as given by (41) satisfies (44).
T,2.

Then, the empirical distribution function is a consistent estimate of

I F(x) with the variance dominated by

I e i 6 B2+ BS )
E(Fn(X ) - F(x)) = V(Fn(X)) i n (i + --

l-p*

I
I

I
I
I

I

I

In addition, if

iii) the sequence [Z_] is ergodic, Fn(X ) converges to F(x) with proba-

bility one for every x.

The term 2B2 is contributed by the first part of Din__ which is due

to the correlated noise, while 4Be results from the bound on the first

part of D

Among other things, (44) implies that D -_ 0 as T _ _. We have
T,2

n
i ~

seen that ergodicity implies only -- 7 D _ O as n _ _. To charac-
n -y=l _,2

terize the type of process which satisfies the assumptions of the theorem,

we can replace the ergodic assumption on the {Z2](equation (38))by the

I

I

stronger condition

lim

n-_oo

P(BnT-JA) = P(A)P(B) (2,2_49)

I
I

This is called a mixing condition (Rosenblatt [34], po ii0).. The mixing

condition implies that _T(zx_z2) + _(Zl) (_(z2) for every Zl and za, and

from the Helly-Bray Theorem we have lim
T,2

T-_oo

Thus, one class of

I
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processes which satisfies ii) of the above theorem is the mixing processes

whose dependency is weak enough so that

T=l Z1 Z2

From the definition of DT,2' this condition then impliesis satisfied.

ii) of the above theorem.

We observe that if the sequence [Zi] is M-dependent, it satisfies

the mixing conditiono I In this case, ii) of the theorem and (46) are

obviously satisfied. If the [Zi] sequence were gaussian, condition ii)

would be satisfied if its autocorrelation function satisfied condition Bo

A further characterization of processes which satisfy condition ii)

is given in section 2°7.

The condition R(t) + C as t _ _, as we have already remarked, implies

ergodicityo The implication does not go the other way° In fact, this

condition on the correlation function is both a necessary and sufficient

condition for the gaussian process to be mixing_ 2

What we have done in this section is to employ the Mehler formula

to dominate the integral

iRosenblatt, [3h], po ii0, shows that a stationary process of independent,

identically distributed random variables satisfies the mixing condition.,

The extension to a M-dependent process is easy_

O_Rosenblatt, M,, "Independence and Dependence," Proco 4th Berkeley Symposium

Math. Statistics and Probability (1961) X_ _, pp._ 431-443o

I
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,ff Ig2(xl-zl,x2-z2;q,P T) - g(xl-zl;G)g(x2-z2;a)l dxl dx2 .

The bound we have obtained is independent of zl and z2 and is given in

terms of the correlation coefficient PT" By specifying the manner in

which the correlation function R(T) goes to zero, we then obtained a

bound on V(Fn(X)).

When the Z i are dependent, we have to require a condition like (_4)

so as to specify a rate of convergence.

In estimating the density function f(x), we will make use of these

results. In all three methods which we present the variance of the

estimate is dominated in the same manner; the part of the variance

expression which is due to the dependency of the observations is written

as the difference of two expectations involving the appropriate bivariate

and univariate density functions.

2. 3 ESTIMATE OF THE DENSITY FUNCTION--KERNEL METHOD

In this section we consider a method of estimating the density func-

tion which is analogous to that used in estimating the spectral density

of a stationary time series. This approach has already been applied to

the case of a sequence of independent random variables [25,26,33,46].

We will generally follow Parzen [26].

The density function we want to estimate is given in (2.1.4) and

repeated here,

f(x) : f g(x-z;_)d_(z). (2.3.1)
z
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From the observations Xi, i=l,2, o..n, we take an estimate of the form:

n

_ _ x-X
fn(Xl'X2'''°Xn;x) = fn(X) nh(n) h(n)

_=i

where h is a sequence of positive numbers depending on n, and chosen so

that

lira h(n) : O. (2.3.3)
n-_ _o

K(x) is a non-negative function satisfying

supK(x)<

f K(_)d_< _ (2°3°4)

Jim !xK(x) I

x-_o

= 0

2_3a Bias Calculation

The expectation of (2) is

fn(X) _
i

f K(x-y) f(y)dy
h

(2o3_5)

The following theorem (specialized to our situation) is given in Parzen.

Theorem 2o_oi (Parzen, po 1067):

respectively, we have

With h and K(y) satisfying (3), (4),

liraE fn(_) -- f(_) ,/_ K(y)dy (2,,3.6)
n+_ -oo

at every point x of continuity of f( ).

I
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/%

With fK(y)dy = i, and since f(x) is everywhere continuous, fn(X)

is asymptotically unbiased estimate of f(x) for every x. In fact, since

the gaussian density is uniformly continuous, f(x) is also uniformly con-

tinuous. It then follows from Parzen's proof that the convergence is uni-

form in x.

Our particular density f(x) is more specialized than that needed

for the proof of the theorem. We can use some of its properties to

obtain a uniform bound on the bias. Rewrite (5) as

E fn(X) = K(u)f(x-hu)du (2.5.7)

Since fK(u)du = 1, we can write

+co

E fn(X) - f(x) -- K(u)[f(x-hu) - f(x)]du (2.5.8)

-00

To find the limiting behavior of the integral, we expand f(x-hu) in a

Taylor series about the point x. Since f(x) is the convolution of a

distribution with a gaussian density, all derivatives of f(x) exist.

I

I

I

I

I

I

h2"u 2 f,,f(x-hu): f(x) - hu f'(x)+-- (x) + O(h3)
2

(2.3.9)

Choose K(u) as an even function and require that

f u2 K(u)du = B4 < oo .

--00

(2.3.10)

Two examples of even 3 non-negative kernels which satisfy this condition

(as well as (4)) are:
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_(u) : _I , l_i
2

= 0 _ otherwise

< i

i _u-.
K(_) - e 2

,477_

They also integrate to one_

Substitute the Taylor series into (8), and perform the integrations°

As n + o, we get

E _n(X) - f(x) --_ f"(x) B4 h2 (2.3.11)
2

To obtain a uniform bound (and for future reference) we note that

the derivatives of f(x) are uniformly bounded in x. Specifically, from

(A°9) it follows that

dj f(x__
= dxJ g(x-z;_)ddZ(z) = aj , j

dxJ z z

and

The last line follows from Cromer's bound, (A.3C). With j = 2, we have

, (x)l! °_

and as n _ _ (ii) is dominated by

Lsfn(x)- f(x)Li e_ B_ h_ O(h_) (23.13)
2_ _e

I
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It is advantageous, in terms of bias to have h(n) go to zero rapidly.

Consideration of the variance of the error, however, will show that it

should not approach zero too rapidly.

2.3b Variance Calculation

The square of 9n(X) is written as

n n n

Z X- mf (x)- _ _( ) + _ K(x-x_)K(--f--) (2_5.14)
n naha na hm h

_=i _=i m=_+l

We proceed in a manner analogous to the development in section 2°2. Take

the expectation of (14), subtract

2 s ( _, (-7-)I _
n2h 2

_=i m=_+l

and add its equivalent

2

1 !)h-_ (1 - [_{K(x-X))]
n h

Subtracting the square of the bias, we obtain the variance:

= *_ _ )2V( )) E fn(X)9n(X E(_n2(X) A

n n IEIK )_ _K __K _)_I
+n2h2__ _, (x-h)_(X-Xm__ _ J ( ( • (_.3.15)

_=i m= _,+i

Again, the second term is a result of the dependency of the observations

We proceed to majorize each of the terms in the variance expression_
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The first term written out is

nh2 nh2 h
(2o3o16)

From the first two conditions of (4) we have IK2(y)dy = B 5 < =. Since

f(y) < i/_% the substitution of u = (x-y)/h in (16) leads to

n--__ ( <
-- nh_ a

(2o3o17)

The second term of (15) is

( _ K(_h-_) f(y)d

Use the boundedness of f(y), the same substitution ss above, and the fact

(2.3.18)

that K(z) is non-negative and intergrates to one to obtain

_:( < _.z( )
nh 2 -- n 2_ d

(2,3o19)

For the third term of the variance equation, let Qm-_ be the expres-

sion inside the double sum° Writing this term out gives

(2°3°20)

where fm-_(Ym,Y2) is the second-order density function of the observations

in the m and _ intervals. The kernel K(y) is bounded (4), s_y by B 7.

Hence

2H (2,3.2:]_)
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and we are in a position to use the results of the previous section (see

equations (2.2.10)-(2.2.15)). For example, with the sequence [Zl} inde-

pendent,

___ ! B__ I_m-_l
1-lPm__l

Combining this with (17) and (19), (15) is majorized by

n

fn(X)) < n 2_o2 nh h2n 2

_=i m=i+l 1- lPm__l

(2.3.22)

With the autocorrelation function satisfying condition B, (2.2.23) gives

2

V(_n(X))< 1 1 +L i + _7B2
-- n 2_ 2 nh _ nh2(1-p.)

(2.3.2.5)

Under these conditions it follows that we need to require nh 2 + = as

n ÷ _ for consistency of the estimate. Notice that if the observations

were independent, the third term would be absent. In this case (as in

Parzen's development) we need only require nh + _.

In Appendix C, section C.I, we show that by choosing K(u) as the

gaussian kernel,

2

u /2

K(u) i --- e ,

(22) is replaced by

qm-_ <- ha (2.3.24)

I
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The reason this is possible is that, with the specific gaussisn kernel

we oan perform the y :integrations in (20) before taking bounds° In this

case, the variance is then dominated by

'\ b i b2
V(fn(X)) < -- + -- (2.3 °25)-- n nh _

where we have set

i _ __°-Be ci
bi -

2_._ (i-_).) 2_

b2 = Bs/_ 2_

The rest of the discussion will assume a gaussian kernel, and for

definiteness_ we assume that the autocorrelation function satisfies con-

dition Bo It was this condition on the noise that gave, for the empirical

distribution function, a rate of convergence equal to the case of inde-

pendent observations) We expect analogous results for estimating the

density function°

_o5C Mean-Square Error

The mean-square error i:_ written in terms of the bias and variance

contributions o

A 2

_,{fn(X)- f(x)} _,(_n(_)- _,(gn(X))_

[_,(fn(x)- f(x))!-

As n _ _ from (13) and (25)_. and settingw__ = ('_iB_)/(_-_2_s)_ , we have

I
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2

E[fn(X) - f(x)] < bl + b__aa+ b3 h4 (2°3°26)
-- n nh

Clearly, to minimize this bound, we choose h (as a function of n) so as

to have the last two terms of (26) tend to zero at the same rate° Dif-

ferentiating, we find that the best h is given by

h _ be

Therefore, as n + =, the mean-square error satisfies

E(A )2 4/5
fn(X) - f(x) = 0(1/n ' )o

(2°3°27)

(2o3,,_8)

This is the order of consistency one obtains for the case of independent

samples [26,33].

Theorem 2.>.2: The estimate of the form

n

f(Xl'Xa' " ° °Xn'X) = n g(x-Xl; h(n))

converges in mean_-square, uniformly in x, at a rate 1/n 4/5 if:

i) :Z_.'_are independent

ii) R(_) satisfies condition B

iii) h(n) is chosen as in (2o3_27)

_Tlearly, we can extend the results for other dependencies on Z o

For the M-dependent case, we have:

Corollary 2o>o1: Under *,he preceeding hypotheses and with condition i

replaced by

i) Z_ is independent of Zm if im-ll _ M, the order of consistency remalns _

C(l/n4/5)
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This corollary follows from the comments in appendix C, (C.10),

choosing h as in (27), and taking bl, as

bl - I [i + 4(M-I) 1 (2.3.29)
2_ 2 l-p.

A

We have obtained the result that the estimate fn(Xl,....Xn;X). converges

in mean-square to the univariate density at a rate not slower than i/n 4/5.

As will be seen in the next chapter, in attempting to estimate the k-variate

density function f(xz,...Xk) , the bound on convergence which we are able

to specify indicates slower convergence.

Another disadvantage of this method is the problem of "growing memory."

The estimate we have been using is of the form

Afn(XI,X2,. ..Xn;X) = i

nh(n)

n

\h(n)/
_=i

from which it can be seen that all past observations must be stored--at

each stage a particular observation's contribution to the estimate is

weighted differently.

This problem can be eliminated if one is willing to accept a final

estimate which is biased. For this situation_ we need only store the

past N observations_ where N is determined by tne bias one will accept.

A recursive relationship is then used to update the estimate.

One advantage of the kernel method is that the estimate is a density

A

function; fn(X) in non-negative and integrates to one. Another advantage

is that no knowledge of the gaussian or z process is required to form

I



I

I

I
I

I

I
I
I

I
I

74

the estimate, a.nd only a minimal amount of information is required to

specify the rate of convergence_,

2o3d Mean Integrated Square Error (MISE)

Another criterion which has been used to measure the error is the

mean integrated square error (MISE)o Using this criterion, one can specify

an optimum choice of the kernel K(y) and investigate maximum rates of con-

vergenceo It is primarily the rate of convergence which we now want to

discuss o

The M!SE is defined as

xjJ = E (fn(Xl, ....Xn;X) - f(x)) 2 d (2,,5030)
n '

We remark that the condition nh(n) _ _ is sufficient to show that,

with probability one.,

n

! _ g(x-X_h(n)? (_.5,,5Z)fn(Xl' ....Xn;X) = n ' -

_=i

is square integrable in Xo In fact, in appendix C we obtain a bound on

the MISEo Our result (see section Co2) is that the MISE = 0(i/n4/5),

i
which is the same rate obtained £or the mean_square error° The question

naturally arises as to whether one can specify a maximum rate of conver-

gence using estimators of the above type.

•_.his is for the case of independent Z a,nd correlated noise with condition

B holding°

I



I

I

I

I

I

ill

I

I

I

I
I

I
I

I
I

I

I

I

I

75

Watson and Leadbetter [45] consider the problem of optimizing the

n

_n(X ) = in Z Kn(X-Xj) (2°3"32)

_=i

estimator of the form

given a sequence of independent observations. They show that the MISE

is a minimum if the Fourier transform of the kernel Kn(x), which we denote

by MK(V),is equalto

(2.3.33)
1 + (n-l) lMf(v) J2
n n

Mf(v) is the characteristic function of f(x). Notice that MEn(V ) ÷ i

as n ÷ _, indicating that Kn(X ) approaches a delta function as is the

case with the previous estimator. Here, however, the kernel_s functional

form is dependent on the index n, which gives a more complicated estimator_

They show that the minimum MISE cannot decrease faster than 1/n.

Specifically, with the optimum kernel given by the inverse transform of

(53)_ the minimum MISE is

_.(o)
Jn, - O(l/n)

n

Watson and Leadbetter further characterize the optimum estimator

by studying the asymptotic behavior of the (unknown) characteristic

function Mf(v). I

1The estimator in (33) is of no practical value since it is expressed in

terms of the function being estimated. By specifying the asymptotic be-

havior of Mf(v)_ they show that there is a class of kernels, with the

same asymptotic behavior, which achieves the maximum rate of convergence.
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Of particular interest to us is the class of characteristic functions

which decrease exponential_y with degree r and coefficient 7_ A character-

istic function is of this class if it satisfies:

i) IMf(v) l <_ A e -71vlr , for some constants A > O, 7 > 0 and 0 < r < 2_

ii) fl
0

dt

1 + exp (27v r) IMf(tv) I2

÷0 as v÷_ .

Under these conditions they state the following theorem.

Theorem 2._._: (Watson and Leadbetter, p. 490): Let Mf(v) decrease ex-

ponentially with coefficient 7 and degree r. Then Jn*' the minimum MISE,

satisfies

lim [n/(log n) I/r] Jn* : [i/_(27)i/r

n-_o

For our case r=2 and with independent observations, the minimum MISE

converges to zero at a rate Qlog(n)/_. This assumes an estimate with the

kernel given by (33) and represents an improvement in the convergence

rate at the expense of a more complicated estimator.

With the noise correlated and the sequence (Z_] independent, we can
i

obtain a corresponding expression for the optimum kernal expressed in

terms of Mf(v) and the sequence of correlation coefficients [Dr). Cal-

culating the rate of decrease for the MISE is difficult. However, it

is easy to show that the minimum MISE cannot decrease faster than i/n_ 1

i
These comments are substantiated by paralleling the development in [45],,

I
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It is this rate and the one for the independent case which we will want

to use as a point of reference while discussing the series methods of

estimating f(x).

2.4 ESTIMATING THE DENSITY FUNCTION BY SERIES METHODS--AN ORTHOGONAL

REPRESENTATION

In this section f(x) is represented in an orthogonal expansion and

i
it is this form which we will estimate. Our concern will be with con-

vergence, not only in the sense of MISE, but in mean-square as given by

(2.1.1)and (2.1.2).

The density function

f(x) = _g(x-z;a)d_(z)

is a bounded integrable function. Hence, it is Le and can be expanded

in a series of orthonormal functions:

oo

f(x) = _ a _.(x/a_) (2o4.1
J j

j=o

Naturally., equality in (i) is in the sense of limit-in-mean. The func-

tions in the expansion are the normalized Hermite functions which form

a complete orthonormal set on the whole line (see Appendix A, section Ao2):

iThis technique has been discussed in [6], but not in any depth.

I
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_j(x/_) = g(x/a_)_(x/_) (2.4.3)
• • |

oi is an arbitrary positive constant.

As discussed in appendix A_ we reserve the H notation for the poly-

nomials orthogonal with respect to the square of the gaussian weight. They

are generated by differentiating ge(x). The He polynomials are genersted

by differentiating g(x) and are orthogonal with respect to the gaussian

weight. These polynomials were introduced earlier.

Given the sequence of observations [X_i_ _=l,2,..o,n, the problem

of estimating f(x) (in the Le sense) is reduced to one of estimating the

coefficients aj_ We designate the estimate of the aj coefficient at the

A

n-th state by ajn:

n

aJn - n q0j(X_/_l). (2.4°4)

_=i

It follows that these estimates are unbiased:

n

E aJn = n

_=i

=7 mJ(x/_) f(x)dx = aj (2°4°5)
--OO

,%

The mean-square error in _hhe estimate is then given by the variance of ajnO

To calculate this variance we proceed as before:

v(A A A 2 _-
ajn ) = E(Sjn - E ajn ) = E(aajn ) aj
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n

{1Z2
_=i

n n

+ n--_ qDj(X_/az)_j(Xm/d z - aj

_=i m=L+l

r, ,]}
n n

n
_=i m=_+l

E (_j(Xm/qZ))_ o
(2.4.6)

The first expression on the right is easily dominated using Cramer's bound°

From (Ao29), we have

_x 2 l_$(x)i
e 2 < el , (Ao29)

where the constant cl is independent of x and j. He nee

l_j(x/_z)! < c_/(_1/4 _i/2) = c2 , (2°4°7)

2c 2 n
and the first expression in (6) is dominated by 2/ ,

For the second expression in (6), we again write out the expectations

and use the above bound on _j(x) to dominate it by

n n +_ +_

_=i m=_+l

'jfm__(x_,x2)- f(x_)f(x2)_x_dx2 (2._-o8)

We have already majorized this term° As it will again appear in the

sequel., we use our previous results to record the following lemmaso

Lemma 2.4o1: Assume

i) the autocorrelation function satisfies condition B
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ii) the sequence (Z_] is M-dependento

Then, (8) is majorized by

Alternatively, if IR(-r)I < g2/T5 for IT[ > B1 and 0 < 5 < 1 (condition A),

AS sume

i) R(T) satisfies condition A

ii) the sequence [Z_] is M-dependent

Then_ (8) is majorized by

2c_.2 (_ + I > + 4c_(M-I) (2.4°9)
1-p. (l_5)n 5 n

The proofs and appropriate definitions are given in the discussion

leading to Corollary 2o2,,I,. Clearly., the M-dependence assumption can be

replaced by a weaker condition as reflected in Theorem 2°2,2° Again,

the point here is that the estimate of aj is taken as an average of

bounded functions and the problem then reduces to one of dominating a

sum involving the absolute difference of the bivariate and univariace

density functions°

In the :following discussion we shall :refer only to Lemma 2o4ol.

Theorem 2.4o1: The estimate as given by

n

_' :, ! _ _j(x_/_l) (2_,4,,4)ajn n

_=i

9

o_. (_2 + 4(M-I))
n l-p*

we have

Lemma 2°4°2:
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is unbiased, and under the hypotheses of Lemma 2.4.1, the variance is

bounded by

V(aAjn)<_" c2 2 B2 =-- (2 + -- + 4(M-I))
n 1-p. n

(2._.1o)

by

Now define the estimate of the density function at the n-th stage

_(n)

_n(X) _ ^ _oj(x/ol)= aj n '

j:O

(2.4.11)

where q(n) is an integer which depends on n. Consider the MISE:

+_

^Jn : E(fn(X ) - f(x)) dx

--00

q

7 2+y iA= aj ajn- aj

j=q+l j=i

a ca q(n)_< aj + (2._.12)n

j=q(n) +i

O0

Since 7 2 = ifa(x)dx < _, it follows that the first term of (12) goes
,.i=l aj

to zero if q(n) ÷ _. With q(n) properly chosen so that the ratio q(n)/n+o,

we have J + 0.
n

The problem of specifying the sequence [q(n)], n=l,$,..., is analogous

to choosing the constants h(n) in the previous section so as to balance the

bias and variance errors. Here, a partial answer is provided if we assume

that the random variable Z has, for example, a finite second moment,
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Below, we will show that this assumption implies that

aj < B_/j 2_ , (2.4.13)

where B s is a constant independent of jr With this being the case, from

the Euler-Maclaurin summation formula_ we obtain_

oo oo

f 2 faj < B_

q(n) +i q+l

oo

i f t_ _ l)dt = B6(I i__)j2 _ Be ( ' t 3 ' q2 °

q oao(__. i.)

The _Z[SE is then dominated by

Jn < Be (! + -- +
q n

i/2 i
and with q(n) _._n

i/2

n
'2,_ i5)

n4/5This does not compare favorably with the i/ rate obtained by

i/o
the kernel method° Here° however, the rate i/n _'- is not a dire_t re-

suit of the method of es_imationo but rsther_ results from the second

moment assumpticno After proving (15), it will be clear as to what ad-

ditional moment assumption is needed to achieve any rate up to i/no

Lemma 2°4°}: With f z2dC_(z) < _._ the coefficients a. satisfy

iMcre precisely, since q is an integer, we choose q = [_Cn], where r ]

denotes the largest integer< qCn o
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_ /2a < BB,j
J

To prove this lemma we first obtain the conditions on f(x) needed

to give the above bound and then show that the second moment assumption

implies these conditions oi

Proof:

(2,4o16)

We note the relationship for the derivative of the Hermite polynomial

which is obtained from (A028),

d __j(x/_)d_ Kj,_ (xi_) : _

S_bstitute for Hj(x!_1) and integrate by parts.

+ = d_. _-l(X,/O1 )

i _ x l_l) _l dx a 'aa : f_x_J2_j"__,i_._ _,' 2_j _-l_
dx

-i ,/_=r_ Hj+I (x ic_j-

,l_(a+l)'-.U._ .,/2a+_-(a+l),_/
I 2[d 0_ _ f(x)g(xl_ dx

,,/2(a+l)' ena'_(x'/<_-) f(x) - f'(x) __ dx
(3,4om7)

Repeat the argument with the function (xf(x) - _12f'(x)) playing the role

_he essential idea of the lemma can be found in Sansone [38], pp° 368-369_

I
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of f(x):

aj = dx
-co I

!
I

I
I

1

2 4(j+z)(j+2)'

+_

f _j+2(x/ez) w(x) dx,

--00

where w(x) = ((x2-012)f(x) - 2ql2xf'(x) + (;14f"(x)) .

(2.4.18)

If w(x)eL2 we obtain

+_

aj E w2(x)dx < B-m (2.4.19)
4(j+l)(j+2) __ -- j2

I
where Be is the L2 norm of w(x)/2.

I Using characteristic functions, it is easy to see that w(x) is an

I

I

I

De function by showing that the individual terms are L2.

_(v) = f_e -j= f(x)dx

_(v) -- f e-JVZdc_(z) .

Define:

I

I

Recall that X = N + Z, and that N and Z are independent. Then,

1 o2ve

_(v) = e-_ Ms(v). (2.4.20)

I

I

Clearly, v2Mf(v) is De. Then from Plancherel's theorem its transform

d2

f"(x) is Le. Similarly, if _-_ Mf(v) is L2, x2f(x) will be ie. With

the second moment of Z finite, the first and second derivatives of

i M_(v) exist, are continuous and bounded. From this it follows that

I



I
I

I
I

I
I

I
I
I

I
I
I

I
I

I
I

i
I

85

d 2

dv2 Mf(v)eL2. In this manner, all terms of w(x) are seen to be L2

functions° qoeod_

It should be clear as to the conditions needed to guarantee faster

convergence of the MISEo

exists, f IzIrd_(z) < _°
--00

lemma we obtain:

Assume that the r-th absolute moment of z

By repeated application of the method of the

2.
a.
J

O0

Z
j=q+l

aj -< B_ o-- r_l) qr-i +
(2 _ 21}

Be is now the L2 norm of the function

dz2r i dr

g(x/dl) 2r/2 dx r (g(x/ol)f(x))_

We summarize this discussion in

Theorem 2.4o2:

estimates

Under the hypotheses of Lemma 2.4.1, the sequence of

_n(Xi,Xe, " oXn;x)

q(n)

Z= Sjn qOj(x/_1)

j=O

with q(n)÷ _ and q(n)/n + 0 converge in the sense of MISE to f(x)o If

r
f ;Z!j da(z) < oo, r > 2 ,

the M!SE at the n-th stage satisfies the inequality

I
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Jn = E / (fn(X) - f(x))edx <_ B 6 (r-l)q(n) r-l

\

1 __ _ c_q(n)
q([)r] n

where es is defined in (i0).

_< (B6n/cs) I/r gives

Choosing q(n) as the largest integer

Jn = O(1/n (r-1)/r) o (2o_,,23)

We now want to consider the mean-square error for fixed Xo With the

/%

estimate fn(X) as in (14)., define the function

q(n)

fq(X) = )-], aj _j(x/_)
j=O

(2°4°24)

The mean-square error, as a function of x, is given by

E (f(x) - fn(Xi,X2, oo.Xn]x)) = E (f(x) - }n(X)) =

(f(_) - fq(x))

q

+ 9(f(X) -fq(X)) E(sj-.ajn) q)j(x/c_l)

j=O

q

+ E ((aj-ajn)(ak-akn)) _j(x/_z)_k(x/az) o

j=O -,

k=O

Since ajn is sn unbiased estimate, the cross-product term is zeros

(2°4°25)

The

other expectation of (25) is bounded by Schwarz_s inequality and Theorem

2o4o1:

(a-_.) ( < ( V(ak_) <n
j Jn

I
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Using (7), the third expression in (25) is dominated by c_q2(n)cs/n.

Hence, we obtain the bound:

E{(f(x)-fn(X))2_ <_ (f(x)-fq(X)) 2

2 2

+ C2 Cs _ • (2.4.26)
n

To continue the discussion we need to investigate the pointwise con-

vergence of fq(X) to f(x)_

Theorem 2.4. 7 (Sansone [381], p. 381): If f(x) is contained in L l and

L2 then, at a finite point Xo, the series

_ aj _j(x/_l)

j=0

behaves like the Fourier trigonometric series of a function which coin-

cides with f(x) in an arbitrarily small neighborhood (xo-h,xo+h) of xO.

In particular if f(x) is of bounded variation in a neighborhood of

x o we have

1

j=O

and again if f(x) is continuous and of bounded variation in (-_,_), then

the series converges uniformly in any interval interior to (-_,_).

Sansone's proof, which is attributed to J. V. Uspensky, involves

showing that in a neighborhood of x0 the partial sum of the series can

be made arbitrarily close to the partial sum of the Fourier expansion

of the function in the same interval. This adaptation of Fejer's method
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i
of Fourier series is also used by Wiener to obtain the same result.

The above theorem is a special case of the more general result that for

orthogonal functions of the Sturm-Liouville type, the Lm series of these

functions behaves in the same manner at a point as Fourier's series do

(Hobson [181, p. 771).

The density function f(x) is LI, L2, and continuous for every x.

It is also of bounded variation in any interval since f' (x) exists and

is bounded (see (2.3.12)). Hence, in any finite interval, as n_ we obtain

q(n)

fq(X) = _ aj q0j(x/_1) _ f(x), uniformly in x.

j=O

Specifying a rate again involves a moment assumption. Assuming the

r-th absolute moment of Z exists, where now r _> 3 (cf. Theorem 2.4.2),

yields:

oo

If(x)-fq(x)i_<I _ aj _j (x/_)l
j =q+l

Co

_< c2 _. lajl
o

j =q+l

oo

2<_c2_ jr/_
j=q+l

(_-I) q q

(2.4.27)

IN. Wiener, The Fourier Integral and Certain of Its Applications, Dover

Publications, Inc., N.Y., 1933, pp. 95-67.

I
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We have used (7), the first part of (21), and the usual integral upper

bound° We are now in a position to prove

Theorem 2°4.4: Assuming the hypotheses of [emma 2.4.1 hold, then, since

f(x) satisfies the conditions of the previous theorem, the sequence of

estimates

q(n)

Z_n(X) = ajn_j(x/az )

j=l

converge in mean-square to f(x) if q + _ and q2/n ÷ O.

(2.4.11)

This convergence

is uniform in x for any finite interval. If the r-th absolute moment of

z exists, r _ 3, the mean-square error is dominated by

E f(x)-_ (x)) < Beca r-i + c$ce n)

n - (2_i) q2 q _ n
(2o4.2s)

Upon choosing q(n) = [nl/r], as n _ _ we obtain

r-2

{< -_ f(x)-f(x) = o(i/n r )
n

For the application _f the empirical Bayes technique, we shall need

A

the convergence of fn(Xn) to the random variable f(Xn)° The mean-square

1

error in this case is written (see (25)):

S f(Xn) - fn (XI, ....Xn;Xn)) =n

E n f(X n) - fn(Xn)) =

!We use the E n notation of Chapter io

I
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= En{f(Xn)- fq(Xn))2 }

q(n)

X ^
+ 2 E n __(f(n)-fq(Xn) ) I (aJ-eJ n) q_j(Xn/°1)_

+ En_, (aj-_jnl(Sk-_knlqDj(Xn/°1)_k(Xn/a,)_ • (2._.29)

Now, the first and third terms have already been bounded independent of

the argument. With a r-th absolute moment assumption on the random vari-

able Z, from (27) we have

En__f(Xn ) _ fq(Xn))_ < _2_(i} 1 + %]_)2
-- r ,

-llq g -i q _/

2 2

and as before, the third term of (29) is dominated by cs c2 q Using
n

these bounds and the Minkowski inequality, (29) is dominated by

En{(f(Xn)-_n(Xn))2} _< __c2 _ 1 qr_2)
2 - l)q r/2-1+

e2 q _nC_} 2
(2._.30)

The fastest rate of convergence is obtained if q(n) is set equal to the

largest integer less than or equal to (Ben/c3) I/r. This gives:

+

E n f(X n) - _n(Xn)) <_ c2_ -i] r -i-i) [(c_ n)I/r

i c2 W_cS (Be/ca) I/r _ 2

[(Bc__s)i/r i_ + (2.4.31)
r n (r-2)/2r_

I
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Asymptotically, (31) is dominated by

En (f(Xn)-fn(Xn) ) -< (r-2)/r
n

=_

l r-2

+ c2 Be r ca 2r

1 r-2

_- - __c2 c3 r Be 2r

_ -1)
2

(2.4.32)

Corollary 2.4.1: Under the hypotheses of Lemma 2.4.1 and with the r-th

A

absolute moment of Z finite, r _ 3, fn(Xn ) converges in mean-square to

f(Xn). The mean-square error is dominated by (31), and for large n we

ha ve

En {(fn(Xn)__n(Xn ))2_= 0(1/n(r-2)/r). (2.4.33)

It is not surprising of course, that we achieve the same rate as

in Theorem 2.4.4°

In practice, we may want to hold q fixed, i.e., estimate an approxima-

tion of f(x). We then take the estimate

q

_n(X) = Z tn @j(X/_l)

j_

q is now a fixed integer chosen according to some error criterion.

The estimates of the q + i coefficients, (4), can be put in the

recursive form

(2.434)

J_jn A- nl n-l) ajn_1 ÷ q)j(Xn/_l) , j = O,l,...q. (2.4.3.5)

fn(X) converges in MISE to a function which differs from f(x) in

I
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La sense by aj , i.e., (12) gives

q+l

OO

E f (f(x)-fn(X)) 2dx _< aj2 + _n

j---q+l

(2°4°36)

In practice, it can reasonably be assumed that the second moment of Z

exists° Hence, the asymptotic error in the estimate is then known to

be inversely proportional to the number of terms used in the series((21))o

Similarly., we can take fn(Xn) as an approximate estimate of f(Xn)o

With r greater than two, the mean-square error ((30)) is bounded by

( (i r r _._I _c_ _a
En f(Xn )_fn( Xn ))2 i caq_-_ 7-_>_7 -_ _n J

(2o4_57)

The asymptotic error is

n f(Xn) =
n_

r-2
o(i/q ) ,

which is inversely proportional to some power of the number of terms used_

RE_RESENT .... ON2_ 5 ESTIMATIN] THE DENSIT_ BY SERIES IMETHODS--AN EIGENFUNCTION ' A_

I

I
I
I

The method we now discuss makes use of the fact thaZ f(x) is the

convolution of a known gaussisn density function with an unknown distribu-

tiono This is in contradistinction to the previous methods which do not

ut.ilize this knowledge°

In the equation :for f(x),

f(x_ _J g(x_;_)d_(z).,

I
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<_(z) is the unknown quantity. To make use of this we want to express

f(x) is a form which, in some sense, isolates _(Z)o This is accomplished

by solving an eigenfunction problem associated with the above equation.

We first observe that the "kernel" g(x-z;o) is not Hilbert-Schmidt;

it is not square integrable in the x-z product space. We will display

a function s(x) such that

f f s2(x)g'_(x-z;_)dx dz < _

X Z

A considerably more difficult task is to choose a s(x) so that we can

solve for the eigenfunctions and eigenvalues of the operator s(x)g(x-z;_);

ioeo, find the @'s and _o's which satisfy

_s(x)g(x-z;_)_j(z/_)dz = aj _j(x/7)
--00

We shall find these quantities by obtaining the diagonal L2 expan-

sion

s(x)g(x-_.;o)_ i_j_j(xH) j .
j_O

XO" 1
Note that by a change of variables y _:-- , the right side of the expan-

7

sion :is symmetrical in y and Zo Hence, the operator s(Ty/ol)g(_ - z;o)

.is also symmetrical and the above formulae reduce to more familiar forms_

For our _urposes, it is more convenient to deal with the unsymmetrical

operator, s(x)g(x-z; _) o

Having found the _'s, we define the coefficients associated with

the distribution _(z):
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," _ mj(Z/_l) d_(z)

Under suitable conditions, the quantity s(x)f(x) can be written:

s(x)f(x)= / s(x)g(x-z_)d_(z)

= _ x.jjd _j(x/7)

j=O

It is this form which displays the unknown quantities mthe dj's.

Consequently, we will estimate not f(x), but rather, the product

s(x)f(x). Since s(x) turns out to be a positive function, it is then

just a matter of dividing by s(x) to discuss the mean-square error.

However, as discussed in section 1.2, when an equivalent test which

incorporates s(x) can be found, the quantity we are interested in estimat-

ing is Just the product s(x)f(x). We proceed to obtain the above

expansion.

Consider the gaussian density appearing in the convolution.

g(x-z;e) is an _ function in z for every x. Expand this function in

the orthonormal series

QO

g(x-z;_) = _ cj(x,_,_)_j(z/o_) (2.5.1)
j=O

where the _j are again the Hermite functions as in (2.4.3), and ql is

an arbitrary positive constant. Here the expansion is in terms of the

indepenaent variable z. As indicated, the coefficients are functions
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of x, _l and c, and are calculsted by

cj(x,ol,(_) = 7g(x-z;o) q)j(z/ol)dz . (2.5.2)

The evaluation of this integral is the main result of Appendix B. Make

the definitions :

 12+o23

7 =
2

C1

Then, from (B.IO),

(2.5.3)

j g(x; _) Hi(x/7)
= _ (2.5.4)

and hence,

oo

g(x-z;_) = g(_;V_2+o_I)'.
j=O

_J Hj(x/7)mj(z/ol)
(2.5.5)

Now consider the function

g(x;7)
s(x)= ,j'--

v Ul

= - X 2 (_2 1 X 2

L _xa-qaj exp 2-- C 2+Ge_G 2_q2 = _ exp (_12_ 2

(2.5.6)

Let _i be greater than _ but otherwise arbitrary. Then, s(x) is a bounded

function. It is also non-negative, LI, and Le. Multiply (5) by s(x)
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s(x)g(x-z;a) =_ _, _J _j(x,/,?,)_j(z/_j_) (2.5.7)

j=O

s(x) is just the right function to make the set of coefficients c.(x,_)
J

an orthogonal set (with respect to dx); or what is the same thing, (7)

is an L2 expansion in the x-z product space with the coefficient a.. = 0
IO

1

if i#j, a..=_ j In fact, we even have more° Since g(x-z;o) as a func
JJ

tion of z satisfies the conditions of the theorem quoted earlier (Theorem

2°4°3), (5) converges uniformly in z for every x,, Hence, we have point-

wise convergence in x and-zo Multiplying by s(x) does not change this

convergence and (7) converges poin_wise to s(x)g(x-z;q)o Since _ < i,

it is easy to see that the error in the remainder term of (7) is dominated

by

OO

_ _J qDj(x/7)qDj(z/_±)

j=J

cl2 _J+l

- _ l-g
(2,5.8)

Since the remainder is independent of x and z, (7) converges uniformly

in x and Zo

Now write

s(x)f(x)

and substitute (7)°

s(x)f(x)_
--00

_j(x/,y)ej(z/_ dc_(z) (2°5°9)

i
It is not difficult to calculate the L2 norms for both sides of (7).

It is equal to _ ({O) 2" = (q3_c2)/2q 2
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_(z).

Define d. as the j-th coefficient associated with the distribution
O

+_

dj = / mj(z/_)d_(z) (2._.i0)
--00

We justify interchanging the operations in (9) by the Lebesgue dominated

convergence theorem° The result is:

oo

s(x)f(x)= _ _Jdj mj(x/z) (2o_.ll)
j=O

Equation (ll) is an orthogonal representation for s(x)f(x). It also

follows, in a number of ways, that the series converges pointwiseo In

view of the inequalities

Idjl _<_f I_(_/_)Id_(x) <
J

C1

_14 i/2
(_ o_ )

C1

Ld_(z) = 1/4 i/2) (2o5°_2)
g UI

and I_I < i, it also follows that

q

l_(x)f(x)-_ _Jdjmj(x/7)I
j=O

e q+l

< (2o5o13)

and the series in (ii) converges uniformly in xo

To estimate the quantity s(x)f(x), we proceed in a manner analogous

to section 2°4° Take, as estimates of the product of the coefficients
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_J dj, the quantity

n

_J A i Z X!= - _j( /7) sCx_), ,.I = ,,2, ....din n

_=i

(2.5.14)

The estimates are unbiased:

E(_ j djn) = E(@j(X/7)s(X) )

= f _jCx/7)sCx)_Cx)dx

= _J dj • (2.5.15)

Since the function q_j(x/7)s(x) is bounded (uniformly in j and x) by

qDjCxl_)s(x)< .1/4_. , 1- _ ,_i_Lr,,_oj : _ c_>_/_

cl

- 1/4 C_le ce)3/_ _ 1/4 = c4 , (2.5.16)( - c_le+c_e )

in analogy to Theorem 2.4.1 (see (2.4.10)) we have

Theorem 2._.i: Under the hypotheses of Lemm8 2.4.1, the estimates _J ^
din

converge in mean-square st the rate l/n:

{_ dj-_J n)2} 'J_Jn m(2 2B b c5
E eJ ( : V( ) < c4 + -- + 4(M-I =

-- n l-p* n

(2.5.17)

As the estimate of s(x)f(x) at the n-th observation we take

q(n)

^ _, ^s(X)fn(X) = _J djn q_j(x/7) • (2.5.18)

j=O
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Designating J_ as the MISE, we have:

!

Jn = E / (s(x)(f(x)-_n(x)))2 dx

q

z. A }= + E (djn-d j )_2J dj2 ej

j=q+l j=i

(2o5o19)

In view of (12) and the previous theorem, J_ is dominated by

J' _ cle _e _eq(n) csq(n)
2 +

n _ oi i-_ n

(2°5°2o)

For fixed n, this bound is minimized if q(n) is chosen as

l_n_ _ c$ol_} _nn22n_ _n nq(n) = 2 _n L c12_n - - ce - 2_n_ (2o5o21)

The logarithm is "taken to the base e o Since 0 < _ < i, q(n) + _o Letting

q(n) equal the largest integer less than or equal to (21), J_ is dominated

by

j, </ c12_ 2C6 l+Cs(c + _nn _ (2°529]

n --k_l_-_J I__2 n n %k/s ° o ,- 21_I

Theorem 2°5°2:

estimates

with coefficients

Under the hypotheses of Lemma 2o4_i, the sequence of

q(n)

s(x)_(x) 1 ]_ _J _n = n djn q°j(x/7)

2=1

n

djn =_ n mj(X2/y)s(X_ )

_=I
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converge in MISE to s(x)f(x) if q(n) is chosen as above.

the MISE satisfies

In this case,

Jn = 0 ("En-----En) (2°5°23)
n

Observe that no assumptions on the moments of the random variable

Z are required.

The mean-square error for fixed x is given by (Cfo(2.4.26)):

S(_2(x)(f(x)-_n(X))2) = s2(x)(f(x)-fq(X))2

q

+ 2s(x)(f(x)-fq(X)) _ E(_J(dj-djn))_j(x/T)

j=O

q

- E(_J_. k (dj-djn)(dk-dk))mj(x/rl%(x/r) o

j=O

k=O

(2o5.2tr)

fq(X) is defined implicitly by the equation

q(n)

s(X)fq(X) = _ _Jdj q0j(x/?')

j=O

(2o 5,,:-_5)

From Theorem 2o5.1 and (2.4_7), the third term of (24) is dominated

by

_- _(n)cz c_ q

,,/-_ o" n

The first te:rm of (24) is majorized using (13), and the middle term. is

zero° Combining bounds yields_

I
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_2 2
^ 2 c_ _eq(n) c__ Cs qe(n)

_(s_(x)(f(x)'fn(X))) < (,_a_) (I-_)2 + "
-- QT'_ 7 n

(2.5.26)

The fastest rate of convergence is obtained if q(n) is set equal

to the largest integer less than or equal to

_n n

21n_

Using the inequality _n(n) -1 < q(n) < In(n) , we have:

2 Ln _ 2 In

a 2} c&4 i
E 2(x) (f(x)-fn(X)) <

- (,_7)(i__)2 n

2

+ Cl CS 1 (Ln n)2 (2.5.27)

4_/-_ 7 n Ln _" "

Theorem 2._._:

(for fixed x) satisfies

Under the hypotheses of Lamina 2.4.1, the mean-square error

E{se(x)(f(x)-_n(X) )e}

.Ln n,
= O(--_--) (2.5.28)

Consequently, the sequence of estimates

q(n)

fn(X)A _ i 1 I _J ^ qDj(x/7)s(x) n djn

J=O

(2.5.29)

converge in mean-square to f(x) at the same rate. This convergence is

uniform in any finite interval.
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A

To investigate the mean-square convergence of S(Xn)fn(Xn) to the ran-

dom variable s(Xn)f(X _) we write:

^ )2}En (s2(Xn)(f(Xn)-fn(X n) :

En {s2(Xn)(f(Xn) _fq(Xn))2)

+ 2E n (Xn)(f(Xn)-fq(Xn)) _J (dj-djn)qDj(Xn/7

j=O

t }+ En{j=O _j k (dj__jn)(dj__jn)_j(Xn/7)_k(Xn/7 )

k=O

(2.5,,30)

The first and third terms of this equation have just been bounded

independent of the argument. From the Minkowski inequality, (13), and

the expression below (25), we have (cf.(26)):

E n 2(Xn) (f(Xn)-fn(Xn)) _<

_= 7" (1-1)
(2.5.51)

This expression is minimized for fixed n if q(n) is chosen as

q(n) = c7 + (2°5,32)

where

c7
114-( _j.os)L,12( 1-[ )

(2.5.33)

I
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1
Setting q equal to the largest integer less than or equal to (32), we have:

_2 2}E n (Xn) (f(Xn)-gn(Xn)) <_

(14) _ + c_ (c_+
Ln(n )

2 _nl_

(2.5.34)

Corollary 2.5.1: Under the hypotheses of Lemma 2.4.1, the sequence of

estimates

q(n)

^ _ f ^ q0j(Xn/7 )S(Xn)fn(Xn ) i _J d.
n jn '

j=O

with q(n) given by (52), converge in mean-square to the random variable

s(Xn)f(Xn). The mean-square error is dominated by (34). Hence, we achieve

the rate :

S ^ )2 _ Ln2(n)E n e(Xn) (f(Xn)-fn(Xn) = O( n ) (2.5.35)

There are s number of differences between this method of estimation

and the previous L2 series representation. To apply the method of this

section the standard deviation of the noise must be known while in the

previous method a moment assumption on the random variable Z is needed

to specify a rate. Using the present method, we have obtained a rate of

lwe have used q > c7 -i+ Ln(n) in the first expression on the right side

of (34). - 2LZn_ I

i
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ln2n/n for the mean-square error (Thm.2.5.3) and ln(n)/n for the MISE (Thmo

2°5°2). For the first series method, with the r-th absolute moment of Z

finite, we had the rate i/r_(r-2)/r for the mean-square error (Thmo 2.4.4)

and i/n (r-l)/r for the MIsEol

In practice, we may want to hold q fixed, settling for an approximate

estimate of s(x)f(x). In this case, we designate the, estimate by

q

s(X) n(X) ^= djn q0j(x/y)

j=O

Considering the MISE we have (see (20)):

lira E .r (s2(x)(f(x)-fn(X)) 2

n-_oo

dx --

a _aaj 2 c_%u_- _2q
= _ dj < __2-- %/_ ql 1
j=q+l

1

2 _ 5 _[ Dcl _ 12-_2 q + 2

2_2 _12+_2 [
(2.5.36)

Similarly, S(Xn)}n(Xn) converges in mean-square to S(Xn)fq(Xn).

The mean-square error is given by (31) and the asymptotic error is:

lim E
n

n_
s2(Xn) (f(Xn) __n(Xn ))e}

(_ O_l'y) (1-_) 2

_2q

iThe comparison of rates for MISE is not really valid as different

quantities are being estimated°
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4
el i (_le-_2) eq+l

_< _ 4_4 (_12+2)2q+ 3 (2.7.37)

The asymptotic error in both cases decreases geometrically with qo

in the previous method, the asymptotic error is inversely proportional

to some power of q.

Another significant difference between the two methods is when we

want to estimate the density function _'(z). This will be discussed in

section 4.4.

Recall that _l is an arbitrary constant chosen to be greater than

_. (a is the standard deviation of the noise ssalples.) For applications

in hypothesis testing withe minimum probability of error criterion, we

will use a test function of the form

PoS(X)fo(X)-pls(x)fl(x)

Since s(x) is proportional to

the free parameter _l can %e considered as a scaling factor for the test

functional. We shall discuss the problem of choosing el in section 4.1.

We remark that in the series method of section 2.4, ql is also

arbitrary and would naturally be chosen to minimize the bound on conver-

gence. For example, it enters into the MISE bound through two terms: B s

2r
is proportional to G1 and cs is proportional to 1/oi •

I
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2o6 SPECIAL FORMS OF G(z)

We consider the case where c_(z) contains a finite set of unknown

parameters which enter linearly into f(x). Examples are equations (1.3.5)

and (1o3o7) with the set of a priori probabilities unknown.

k

_(z) -- i Pi _(z-Yi) (1.3.5)

i=l

where u(z) is the unit step function° Then,

+_ k

Jg(xz;_)d_(z)_ p_g(xyi;_), (1o36)f(x)

-_ i=l

We take (1o3o5)

and the problem is to find a sequence of estimates, Pi,n' which converge

to the Pi for i=l,2,...K. For the case of independent samples, this pro-

blem has been solved° 1 The procedure used is still applicable in our

situation.

A necessary and sufficient condition for the existence of the

A

sequence Pi,n is that the signals (the mean values of the gaussian density

functions) Yi' i=l'2''''K_ be distinct. The condition is clearly neces-

sary for if Yi = Yj we can not distinguish between the hypotheses i,j,

or the a priori probabilities Pi' Pj" Sufficiency is demonstrated by

constructing the sequence.

i

Robbins [31]. For a discussion of this general type of problem see H.

Teicher, "Identifiability of Finite Mixtures," Ann° Math° Stat., vo 34 ,

1963, ppo 1265-1269.

I
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We will show the condition that the signals be distinct is equivalent

to having the K functions g(x-Yi;O), i=l,...K, linearly independent. Post-

poning this proof till later, we now give a procedure for estimating the

pi o Assuming that the g(x-Yi;O ) are linearly independent, define:

+oo

gij = fg(x-Yi;_)g(x-yj;_)dx = g(Yi-Yj; _-_ q) (2o6.1)

--00

G = the Gramian matrix who_e elements are gij; i,j=l,...K

-i
hij = the elements of the inverse G

g(x) = the K-dimensional column vector whose i-th entry is

g(x-yi;_)

Consider the vector

±
g (x) : G-l_(x), (2.6°2)

whose i-th entry is given by

k

j=l

Postmuitipiy #(x) by the transpose of the vector g(x) and integrate each

element of the resulting matrix over x:

(2.6°3)

-i
f #(x) _,(x)dx : o f _g(x)_'(x)dx: T. (2°6°4)

I is the identity matrix° Hence, gl.(x) is orthogonal to the space spanned
i

by the g(x-yj;_), j=l,.ooi-l,i+l,.o.K:

I
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K

= _ hij f g(x-Y.;_)g(x-Yk;_)dx
a

j=l

I

I
I

I
I

I

= lifk=i

= 0 otherwise.

As an estimate of Pi at the n-th stage take

A

Pi,n

n

lZg_(x,_
n 1

L=l

K n

i _, _ g(XL_yj;_)n hij "

j=l _=i

The estimate is unbiased:

(2.6.5)

(2.6.6)

I A

E Pi,n = E gi_(X)

I
: f g_(x)f(x)ax

Z= Pj I gi(x)g(x-yj;q)dx

I j=l

-- Pi

!
Observe that gT(x) is a bounded function

(2.6.7)

I 1 _ c8(i)l_x)l <_,/-2[_ lhijl = _

I

I

(2.6.8)

Consequently, our previous theory is immediately applicable. By a proof

lObserve that the "active" part of the estimate is the inner sum. The

hij are constants computed before the estimating procedure begins.

I
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which is essentially identical to Theorem 2.4.1, we obtain

Lemma 2o6.1: Under the hypotheses of Lemma 2.4.1_ the sequences of

A

estimates Pi,n' i=l,...K, converge in mean-square to Pi with the variance

of the estimate dominated by

_ pi_Pi,n ) _ ^ 2 c@2(i) BeE ( ^ 2 = V(Pi, n) _ _ 2_ 2 (i +-- + 2(M-l))
1-p.

(2°6.9)

We have identified the random variable Z as Z(_j):y.. That is 3 theJ

underlying probability space consists of the points _ =[c_ ,_i.. °'_ o.o },n

with P(_j) = pjo Z_(r_j) is then interpreted as saying that in the _-th

interval, yj was transmitted. The M-dependence assumption represents

transmission with a finite memory; the probability of transmitting yj

m-_

in the _-th interval and Yi in the m-th interval is Pij _ which need

not equal piPj if Im-_i < M.

The extension to transmission with "infinite" memory comes essentially

from Theorem 2°2°2. For example, we can require that

m-_ I-

= Pi-J > Pi Pj as T + ooPij

and

n

_i( TPij-PiPJ )I S Bs n ,

'._=l

0<5 <i (2o6o10)

Then, the variance of the estimate is bounded by
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{( _ V(Pi,n) [ 5]
" _ ^ 2o_(i) (1 + B.t__) + _B_n .

E pi-Pin) = <- e
n 2_ _ 1-p.

(2o6o11)

Convergence takes place 8t the rate I/nl-5. I

There remains to show thst the g(x-Yi;_) are linearly independent.

Assume they are dependent. Then, with ai _ 0 for all i, the dependence

assumption gives

K

Y,
i=l

aig(x-yi;_)= o. (2.6o12)

2 2

l_v
-Z

Take the Fourier transform of (12) and divide out the common e

term:

K

s. e jvyi = O.
1

i=l

Multiply through by e-jvyk Using the mean-value property

T

lira 1 / jvxT_ T e du = i if x = 0

o
= 0 otherwise

and the fact that the Yi are distinct, we get that ai = O, i=l,2oo.K.

This is a contradiction° Hence, the g(x-Yi;q) are linearly independent°

The above procedure is clearly applicable to the case

iThe Ka factor comes from bounding the term Dr,a, ioe., summing (i0) over

all i and j. See (2o2o41).

I
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K

_(z) -- _. Pi f u(z-Y)d_i(Y) (1o4o3)

i=l

where the _i(Y) are known distributions and the set Pi is taken 8s unknown°

The density function of the random variable X is

K

f(x) --_, Pi fi(x)

i=l

where fi(x)= I g(x-y;_)d_i(y)

I
Since the fi-(x) are bounded functions, so will the corresponding fi(x)

be bounded. Then, we need only require that the characteristic functions

of the distributions _i(Y) be linearly independent.

2,7 SUMMARY AND GENERALIZATIONS

In this chapter we have primarily been concerned with the problem

of estimating a special, but not unimportant, univariate density function

f(x) - I g(x-z;_)dG(z)

Given the sequence of dependent random variables X=N+Z, we have displayed

consistent estimates of f(x) and have obtained bounds on the rate of con-

vergence. We have given two methods of estimating f(x) and another method

of estimating the product s(x)f(X)o

To apply the kernel method, one must recompute the contribution of

all past observations at each stage in order to obtain an asymptotically

unbiased estimate. Using 8 gaussian kernel, we hsve shown that this method

!
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gives a rate of convergence equal to O(i/n _/9)
1

• The estimate is a density

function in that it is non-negative and integrates to one. No knowledge

of the underlying process is needed to form the estimate or to specify

the rate of convergence.

To use the first series method, we require a moment condition to

be able to specify a rate of convergence. No knowledge of the gaussian

process is needed to form the estimate. The eigenfunction representation

for s(x)f(x), on the otherhand, does require knowing the standard devia-

tion _ . Both series methods may lead to estimates which, at some point

of the sequence, are negative over a finite range of x.

In practice_ either series can be truncated with the remaining finite

number of coefficients estimated recursively. We have already pointed

out the dependence of the asymptotic error on the number of terms used.

We have also shown (Corollaries 2._.i and 2.9.1 ) that both series

methods converge in the manner required to guarantee the convergence of

the empirical Bayes procedure discussed in section 1.2.

Somewhat secondary to our purpose, but worthy of mention, is the

fact that the Le representation can be applied to the more general problem

of density estimation given a sequence independent observations. Suppose

the density function p(x) and its first three derivatives exist• Further,

assume that xSp(x),xap'(x),xp"(x) and p(x)''' are LR functions. Then,

using the technique in section 2.4, we can estimate p(x) with 8 mean-square

1

This assumes appropriate conditions on the dependencies of the observation.
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error = O(llnll3). This does not compare favorably to the rate o(lln_15)

obtained by the kernel method which requires a minimal amount of assump-

tions on p(x). However, in estimating a k-variate density function, we

will see that the series method, with the same type of assumptions as in

the univariate case, keeps the 1/n 1/3 rate, while the kernel method leads

to a rate which is considerably slower.

With the exception of section 2.5, the results we have obtained are

not unique to the gaussian noise assumption, but to a class of processes,

of which the gaussian in the most prominent member. Specifically, the

technique we have used is applicable to any stationary bivariate density

1
function which can be expanded in the form

(a e(bp2(x,y): pa(x)_(y) aij oi )(x) j )(y)

i,j

A(_) _(b) )dxdy
with aij = f p2(x,y) _i (x) 8j (y

and where Pa and Pb are the marginal density functions of p2(x,y). The

o!a)(x) are polynomials orthogonal with respect to the weight Pa(X). The
i

Mehler formula is a special case of this expansion (with convergence el-

ready established) wherein, @

(2.7.1)

(2.7.2)

a.. = O, i_j
IJ

i
,i=j

j'.
(2.7.3)

iEquation (i) is called the Barrett-Lampard expansion [3], and has found

other uses in noise theory [7,22,23].

i
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That is, for the bivariate gaussian density, the expansion is diagonal

and pa(x) -- _(X)o

It is this expansion which gave the desired cancellation of the pro-

duct of the univariate gaussian densities and the first term of the series

(2.2.11). Any bivariate density function which can be expressed as in

(i) will give the desired cancellation, for it is easy to see that, in gen-

eral, 8o(X)= i and aoo=l. Hence, the first term of the expansion is just

the product of the univariate densities° Then, in analogy to the develop-

ment in section 2.2, one can obtain the bound

// Jp_(x,y) - pa(x)%(y)ldxdy _

where i and j are not both equal to zero.

sion corresponding to (2.2.8), the summability of

n

!=i i,j

(2o7°4)

To dominate the variance expres-

(2°7°5)

would be investigated. The interpretation of summability in terms of

the underlying noise process would now have to be made with reference

to all the moments of the bivariate density and not just the correlation

function as in the gaussian case.

In the Barrett-Lampard paper, the authors give another example of

a bivariate density which admits a diagonal expansion and for which the

!
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coefficients form a geometric progression. This is the case of narrow-

band gaussian noise subjected to an instantaneous square law envelope

detector. The expansion takes the form([3'], Eq. 80):

oo

PT(Xl,X2) = p(xl)p(xe) 7. (_2(T))JLj(xl/2qa)Lj(xe/2_a), (2.7.6)

j=O

2

where x i is the square of the envelope_ xi=Hi, and the density function of

R is given by the Rayleigh density. The polynomials in this expansion

are the Laguerre polynomials which are orthogonal on 0 < x < _ with respect

to the weight

1 -X

exp (2-_) (2.7.7)p(x) - 2_2

The quantity _ is defined as([3] , Eq. 72)

oo oo

O O

where Sn(f ) is the power spectrum of the narrow-band gaussian noise and

2
C

oo

= 7 Sn(f)df

0

Assuming that _(T) < i for T _ 0, (4) reduces to

n

n l-_a(T)
T=I

, (2.7.8)

in direct analogy to the development in section 2.2.

For the class of stationary Markov processes, Barrett and Lampard

show that if the bivariate density admits a diagonal expansion then the

!
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correlation function is an exponential function of time and the expansion

takes the form

oo

p(xl,xn)=p(xl)p(x2) _. e

j=O

-kj T

ej(x_)ej(x2) (2.7.9)

m is the distance (in time) between the random variables xl and xe. Wong

and Thomas [47] have further characterized the Markov processes which admit

the above expansion. This class is composed of three distinct types, all

of whose univariate density functions belong to the Pearson system of dis-

1
tributions. This class consists of:

a) the gaussian density with the associated Hermite polynomials°

b) the density p(x) - i x_ e -x and the associated Laguerre
r(_+l)

polynomials. For _=n- ½, n=O,l,2,.., we have the chi-square distribution,

and for _=0 we have the case just discussed ((7)).

1 r(a+_+2) (l-x)_(l+x)_
c) the density function p(x) -

2_+_+lr(a+l)r(_+l)

which represents the Pearson type I system. This includes the uniform

density and the density function of a sine wave with unit amplitude and

random phase. The associated polynomials are the Jacobi polynomials which

include, among others, the Legendre and Chebyshev polynomials.

With the marginal density function of the Markov sequence given by

one of the above, the corresponding bivariate density function is given

i
Their technique is to reduce the Fokker-Plank equation to a Sturm-Liouville

eigenvalue problem. Necessary and sufficient conditions are then found

under which the eigenfunctions form a complete set of orthogonal polynomials.

These conditions include a differential equaZion which the univariate density

must satisfy and which characterizes the Pearson system.

.%

I
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by (9).

In the context of our problem, these results can be applied not only

to the noise, but to the [K_] sequence as well. For suppose that the den-

Then, the quantity
T,2

sity function of (_T(zm,z2) is given by (9).

(Eqo (2o2.41)) can be written as:

D
T,2

oo

S Z e-XJ'r

j---1

Consequently, a theorem analogous to Theorem 2.2.2 can be obtained with

a. rate of convergence determined by the growth or summability of the

quantity

n oo

2

n--_ Z (n-T) Z e -_jT

m=l j=i

To extend the technique of section 2°5 to other noise processes,

one must solve an eigenfunction problem where the kernel is the corres-

ponding univariate density_unction of the noise. We suspect, but have

not proved, that progress in this direction can be msde for those processes

whose univariate densities are the weights associated with the classical

polynomials° These polynomials ([12], page 164) are just those polynomials

mentioned earlier whose corresponding weights belong to the Pearson system.

Most of the specific properties of the Hermite polynomials which we used

I
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are common to the classical polynomials. In addition, those polynomials

which are solutions to a Sturm-Liouville problem form a complete set and

behave (in an interval) as does the usual Fourier series (Hobson [18],

page 771).



CHAPTER 3

ESTIMATING THE DENSITY FUNCTION OF THE OBSERVATIONS--k-VARIATE CASE

_.i INTRODUCTION

In this chapter our previous results are extended to an arbitrary

k-variate density function. For the univariate case, convergence state-

ments generally followed from the inequality

II Ig2(x_,xa;_,pT) - g(xl;a)g(x2;_)Idxldx2

</m]_
m

1-1pTl
(5.1.1)

This was derived in section 2.2, equation (2.2.19).

will be concerned with dominating the integral

In this chapter we

H[gek(Xl,X_2;MT)-gk(Xl;A)gk(Xa;A) Idxl dx_a , (3.1.2)

where gk and gek denote the k-variate and 2k-variate gaussian density

functions, xl and x2 are k dimensional vectors, xl represents the k

samples from the _-th interval and x2 the k samples from the m-th interval.

Both vectors have a covariance matrix A which, from the stationarity as-

sumption, is independent of the interval.

dimension 2k, is given by

The covariance matrix MT of

M T = E LL x2j J
(3.1.3)

i19
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I BT
I

L _ i

, (3.1.3)

with T = m-_, and ' denoting the transpose.

In the next section we majorize the 2k-fold integral by displaying

a transformation which converts (2) into k double integrals of the form

(i). This change of variables allows us to go directly to the Mehler

formula without any further generalization of the Hermite polynomials

introduced earlier. The majorant will now be a function of the eigen-

values of a certain matrix and not simply expressed in terms of the cor-

relation coefficients. A rate of convergence can still be determined by

investigating the properties of the autocorrelation function.

Having majorized (2), the extension of our previous results will

be obvious. For this reason we simply state the results in section 3.3,

commenting when there is a significant difference in the technique or

final result.

3.2 DOMINATING THE 2k-FOLD INTEGRAL

Define the 2k-dimensional vector u as

and the matrix N (of dimension 2k) by

N = (3.2.2)

I
I
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Equation (3.1.2) is written as

/ig_k(u_MT)-g2k(u_N)Idu , (3.2.3)

with du representing the 2k differentials dul...dU2k.

As already mentioned, we want to show that a change of variables

u--T-iv reduces (3) to k double integrals of the form (3.1.1). What is

the same thing is to show that a non-singular transformation T takes

M T into

T'MT
T (3.2._)

and N into

T'M T
T

/ I1I
I

I

1
I

(3.2.5)

Here_ C and R are kxk diagonal matrices•

This simulatneous transformation is accomplished in two stages.

The first step is to reduce N and M to diagonal matrices. Let TI be

the transformation such that

T[ % T_ : nT
kl 0 ]

k2

0 k2k

(3_2.6)

and

T_ N Tl = I'JI
I
I

This is the usual "double-diagonalization" procedure.

(3°2.7)

I
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The second step is the reverse of this process.

show that there is an orthogonal transformation T2 such that

That is, we then

Since T2 is orthogonal (7)_ remains invariant under this transformation.

The required transformation is then T--TIT 2.

From (6), it is not immediately evident that A T (with 2k diagonal

elements) is similar to (8) which has k free parameters (the diagonal ele-

ments of R). In addition, to apply Mehler's formula we will need the ele-

ments of RT strictly less than one.

We will establish that A T and (8) are indeed similar, and that the

elements of R are less than one. The only assumption which we will make

is that MT be a positive definite covariance matrix. By this we shall

always mean strictly positive definite.

What we are concerned with here is a generalized characteristic-

value problem, or what Gantmacher calls the pencil of quadratic forms.

We will use some results from Gantmacher [14], Chapter i0, section 6.

To avoid a proliferation of subscripts we drop the T subscript

for the present and since _e are consistently dealing with vectors we

will not use any special notation for them.

Two real symmetric quadratic forms 'M(x,x)=x'Mx and N(x,x)=x'Nx

determine the pencil of forms M(x,x)-kN(x,x). k is a parameter.

m R I l R
I

T_ AT T2 = , = , (3.2.8)
I i

I
T ! ,
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Definition: If the form N(x,x) is positive definite, the pencil M(x,x)-

kN(x,x) is called regular.

Definition: The equation IM-kNI = 0 is called the characteristic equa-

tion of the pencil of forms M(x,x)-kN(x,x).

From (3), with M p.d. (positive definite), A is also p.d. since it

is a principal minor of M. Hence, N is p.d., and the pencil of forms is

regular.

Theorem 3.2.1 (Gantmacher, page 310): The characteristic equation of

a regular pencil of forms, IM-kNI = O, always has 2k real roots kj with

the corresponding principal vectors zJ=(zlj,z2j,...,Z2k, j), j=l, ...2k,

which satisfy

Mz j
: _jNzJ , j:l,2,...2k (3.2.9)

These principal vectors can be chosen such that the relations

°t

N(zi, zj) = zI Nz J = 5ij , i,j=l,...2k (3o2.10)

From (10)/it follows that the zj, J=l,...2k are linearlyare satisfied.

independent.

The existence of the required transformation TI is assured by

2k

Theorem 3.2.2 (Gantmacher, p. 314): If Z = [zij]1 is a principal matrix

of a regular pencil of forms M(x,x)-kN(x,x), then the transformation

x : zy (3.2.11)
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reduces the forms M(x,x) and N(x,x) simultaneously to sums of squares

2k 2k

Z _ Zkj yj , y_. ,

j =i j=i

(3.2.12)

where hl,k2,...,k2k are the characteristic values of the pencil M(x,x)

-hN(x,x) corresponding to the columns z!,z2,...,z 2k of Z.

Conversely, if some transformation (x=Zy) simultaneously reduces

M(x,x) and N(x,x) to the above form, then Z is a principal matrix of

the regular pencil of forms M(x,x)-hN(x,x).

proved by writing (9) as N-iMz = hjz JThe first theorem is and

then showing that N-IM is similar to some symmetric matrix for which the

characteristic values are known to be real, etc... The second theorem

is the usual statement of the double-diagonalization process.

As a consequence of Theorem 3.2.1, we know that the elements of A

in (6) are real. A further characterization is obtained by noting that

for any characteristic value and vector, we have

zJ'Mz j = kjzJ_z j , j=l,2,...2k. (3.2.13)

Since M and N are both p.d., it follows that

kj > 0 ; j = 1,2,...2k .
(3.2.14)

We now want to show that k of the kj are determined by the remaining

k characteristic values.

Let zI and z2 represent k-dimensional vectors and write z : [ z__],

where z is a principal vector of (9)- Expressing M and N in terms of A

I
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and B_ we obtain from (9) the following two equations:

(l-h)Az_ + Bz2 = 0 (3.2.15)

B'zl + (1-k)Az2 : 0 (3.2.16)

From (15) we ha_e

(1-k)zl = -A-IBZ2 (3.2.17)

Multiply (16) by (l-h) and use (17) to substitute for (l-h)B'zl. Equation

(16) becomes

[(I-k)eA-B'A-IB]z2 = O . (3.2.18)

In an analogous manner we obtain an equation for the zl vector,

[(I-k)mA-BA-IB'}zl : O. (3.2.19)

The 2k characteristic values hj must satisfy IM-kjNI = O. They must

also satisfy the characteristic equations associated with (18) and (19)o

It is not difficult to show that the characteristic equations of the above

two equations((18) and (19))are equal. 1 Therefore, we need only consider

one of them. Let

r = (l-k) (3.2.2o)

Equation (19) is written as

IBellman, R., Introduction to Matrix Analysis, McGraw-Hill Book Co.,. 1960,

2' 94.
4



I

I
I
I

I
I

I
I

I
I
I

I

I
I

I
I

I
I

126

[rmA-BA-IB ']zl = O. (3.2-21)

Observe that BA-IB ' is symmetric. Since A is p.d., (21) is a regular pencil

2
with the parameter r . From Theorem 3.2.1, we have that there are k real

a
roots rj, J=l,2,...k, with the corresponding linearly independent principal

vectors z_, j=l,...k.

The characteristic equation corresponding to (21) is a polynomial

2
of degree k in r . Viewed as a polynomial of degree 2k in r, the 2k roots

are equal to ±WC r_ , J=l,...k. From the definition or r, we have

kj = 1 +_ = 1 + rj

k j+ k 1 - = 1 - rj
, j = 1,2,...k.

(5,2.22)

Since kj is greater than zero ((14)), we have the bound

Irjl < i, j=l,...k. (3,2.23)

Using these results, (6) can now be written as

TIMrl = A

m

l+rl

l+r2

0

0

l+r k

1-r I

l-r k

(3.2.24)

I
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with the k values of r given by the roots of the polynomial

iA-IBA-IB' - r2Ij = 0 (3.2.25)

As an aside, we remark that the 2k principal vectors of (9) are

given by

zJ_ I i zlj } zj+k_2 z2 J : _[_-_] j:l,2,...k,

where zl j and z2j are the principal vectors (of dimension k) of (19) and

(18). It is a simple matter to see that the 2k vectors thus defined are

linearly independent. It is only slightly more difficult to show that

they perform the double-diagonelization, i.e., (12) is satisfied,

We now show that A, as given by (24), and the matrix defined in

(8) are similar. For this-it suffices to show that their characteristic

equations are the same.

From (24) we have_

k

JA -711= _ (1-r_-27+ @) .
i=l

(3.2.26)

To evaluate the characteristic equation of (8), we need to specify the

Choose the k positive values rj = + Jr_3 j=l_...k,
J

diagonal matrix R.

and take R as

R _.

rl

r_

rk_

(3.2.27)



PI

I
I
!

i
I

i
I
i

I

l
l

128

The characteristic polynomial of (8) is given by

- 7

(3.2.28)

To determine this characteristic polynomial, we use the same argument as

in going from (15) to (-19). We write

---4 .... =
I

R i I

and obtain the characteristic equation for the vector wl (or w2),

[(1_7)21- R2} w_ : 0 (5.2.29)

The characteristic equation in given by I(I-F)21-R21, which is identical

to (26). Hence, the existence of the orthogonal transformation T2 is

assured.

I

,i
I

In the context of our problem, and to summarize the results to date,

we have

Theorem 3.2.3: We are given the 2k-order integral

U

•' with M = LBT .FA---!---_-TI ' and N = LO---IFA'0_I....AA

|

(3.2.3)

If M is a positive definite covariance matrix, there exists a change of

variables
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= T -Iu v = (TIT2)-Iv (3.2.30)

with ITI% o which takes (3) into

2k
k

f .... fin
i=l

k

g2(vi,vi+k;z,ri) - n g(vi;1)g(vi;l)ldvx...dV2k
i=l

(3.2.3l)

2
The vj are scaler variables and the k values of ri are given by the roots

of

0 = IA-IBA-IB ' - r211 (3.2.25)

Since Irkl < i, i:l,...k, we can use Mehler's formula to majorize

(31). Let the symbol j _ 0 mean "excluding the term j!=j2 .... Jk=O. ''
@

using the expansion for the bivariate gaussian density, we have:

Then,

2k k

;....fJH
i=l

k

g2(vi,vi+k;1,ri) - H g(vi;l)g(vi;l)Idvl...dV2k
i=l

2k

f....y

oo Ji
k

_-_>_ ri Hej (vi)g(vi; l)g(vi+k;l ) ---r He (Vi+k) I
i=l Ji" i Ji

Ji=O

dVl...dvek, _ _ 0 (3.2.33)

Bring the integrations inside the summation and bound the integrals as in

(2.2.1_). We then obtain

Corollary 5.2.1: Let M r be a positive definite covariance matrix. It

then follows that

y Ig2k(u;MT)-_k(u;N) Idu <
U
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I k j.

.K _, riI , j _ 0

I i=1 Ji=0

k

I = -i + H ---!--i • ,
i=l l-ri,T

I where ri' satisfies

I IA-IBTA-IB_-r_,TII : 0, i:l,2,...k.

I For k=l we hsve A=I, BT=PT , ral,T=p_, and (33)reduces to (2.2.15).

The maJors nt in (34) will enter into the varisnce calculations summed

I over T. We want to again interpret this sum in terms of the sutocorrels-

I tion function R(T). In analogy to section 2.2, designate

n _ f_

I n F1- K (l-r , ]

I 1 l, r.Let r.=min (l'ri T )" Since r_ TI < > O.
T>I ' _'

_, _r _ ,l
I ) D < - ) _I-K

/. T -- r. / ' L i=l (l-ri'T_ "T=I T=I

I

I

I

Writing out this expression gives

nZ DT - r.

T=I T=I =i

ro

13T

(3,2.34)

(3.2.35)

Then, (35) is dominsted

(3.2.36)

kZ ri, Trj, T + ... +(-l)kr r ...rk,
i_ T _,T

i,j
i_j (3 2.37_--'

I
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The j-th inner summation gives k:/(j'.(k-j)') terms, where j:l,2,...k.

There are then 2k-i terms which are summed over T. Since Iri,Tl < i,

for all i and m_ any term which contains a r. as s factor is dominated
1,T

by the single term ri, m appearing in the first inner sum. Consequently,

(37) can be bounded by

n n k

T -- r. k

m=l m=l i=l

r. (3.2.38)
l,T

From the Schwarz inequality we have

k 2 k

ri, < k ri, m

i=l

and it follows that

n

T=I kl/2r* i=l '

2 is just the trace of the mstrix (A-IBA-IB').The quantity _ ri, T

He nce

nT -- 1/2 race (A-iBm m

T=I k r. T=I

(3.2.39)

4
The trace is the sum of k terms. Each of these terms involves the

product of the correlation function evaluated at different arguments. The

matrix A-I_ which also involves the autocorrelation function, does not de-

pend on m but only on the manner in which samples are taken in a particular
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interval° Define:

-1 _l
a_ = elements of A

= elements of B., i,J=l,2,...k
w

R.(T) = max IRij(T)I
i,J

-1

i j

(3.2.4o)

The trace is given by

k

trace (A -l -: _ _: -:B A B') = ajljs a jaj4 Rjaj2(.r ) Rjlj4(T ) o

Jl,Je,Js, J4

Using the above definitions, we obtain the bound

2 2

trace (A-:B A'IB ') <_ R.(T)A (k)

and (39) becomes

n

T=l

n

< (2k-l)A(_)_ J_.(T)i
- k 1/2r.

T=l

n

T=I

(3.2.41)

We are now in a position to use the results of section 2.2 to obtain

Corollary 3°2.2: If R(r) satisfies condition A, from (2.2.21)i we obtain

n nl_5

_ D_ < Bs(k) a2_T -- 1 + _ .

_=l (:-_)/
(3.2.42)

I
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If condition B is satisfied, then, from (2.2.23), we have

n

2 D' < Ba(k) a B2
T --

T=I

(3.2.43)

With the exception of when Be is given by the Euler-Maclaurin summa-

tion formula, the constants Bl and Ba have the same meaning as in section

2.2. To use the Euler-Maclaurin formula, rather than sum R.(T) over T,

we first sum Rj(T) over j, j:l,...k, for each T. That is, we sum 811 ale-

ments of the first row of B T for each T, and then sum over T. Ba is now

given by (cf.(2.2.25)).

B2

oo

_ i f(klR(t) l + IR'(t)l)dt

o

3.3 ESTIMATING THE k-VARIATE DENSITY FUNCTION

Rather than introduce a new set of constants we will use the same

notation as in chapter 2 for those constants which play similar roles.

I

I

I

I

I

I

I

3.3a The Empirical Distribution Function

The k-variate empirical distribution function is given by I

n

Fn(X ) = i _,- n Ui(Xi)

_=i

The random variable U_(X_) is defined as

I

The notation y is used to designate s vector.

(3.5.1)
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u_(x__)= i if x_ <_x (3.3.2)

= 0 otherwise

X_ is the sample vector in the 2-th intervai, so that by X_ _ _ we mean

the set of inequalities X_i _ xi, i=l,2,...k, _=l,2,...n. In analogy to

Theorem 2.2o2._ we hawe

Theorem >.3.1: Given the sequence of identically distributed stationary

random vectors _i = N. + _i' with the k-variate density function--1

f(x) : f gk(x-t;A)d_(_z). (3.3-3)

Define:

D
ff Ok(y__-z__A)Gk(Z2-z_2_A)[ a_T(z__,z_2)-

d_(z__)d_(z_2)]• (3°3.4)

whe re

Y

J-Gk(Y-z;A ) = gk(x-z; A) d_x

--00

and

Assume

i) R(t satisfies condition B

ii) _r,2 satisfies

I
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O0

T=I

= B 3 <oo

Then_ the empirical distribution function is a consistent estimate with

the variance bounded by

E{(F(x)-Fn(X) )2} = V(Fn(X) )

i o2< - [l + 6 Bs(k) B2 + B3]
-- n (3o3.5)

3" 3b The Orthogonal Representation

i
The k-vsriate density function (3) is expanded in the series

jl jk
(3.3.6)

The q0's are the one-dimensional Hermite functions as in (2.4.3). We will

write (6) as

f(x) : _ __jmj(x)
J

(3.3.7)

A

The estimate of aj at the n-th stage is denoted by a--in '

n

s. : - mjx_( ) °--jn n
_=i

(3.3.8)

These estimates are unbiased.

if(x_) is bounded by [(2_)klAl]

Since the function 9j(_) is bounded (see

-1/2

and therefore it is L2 in Rk.

I
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(2°4.7))by

k/(_/E 1/2
19j(x)! <_ ci (_1ce.-.o k) ) : ca , (3.3.9)

in analogy to Theorem 2.4.1 and using Corollary 3.2.2, we have

Lemma 3.3.i: Assume the sequence of vectors[Z_} is M-dependent and that

R(t) satisfies condition B. Then,

_aj-_ajn) __ V(_aj 2t, 27 ^n) _< 2 c2 (l+a Bs(k)B2 +2(M-l)):E = 2

n n

(3o3o10)

For
2 2 Ba

k = i, _ Bs(k) Ba =

l-D.

As an estimate of f(x), we take

q1(n) qk(n)

f (x): ""
n --

Ji=0 Jk=0

, and (i0) reduces to (2.4.10).

A

aJl'" "Jk q0J1(Xl/O1)''" qOjk(Xk/_k)

We shall set ql = o.. = qk = q.' and write the estimate as

q(n)

_n(X) =I _- --in @j(x_) o

j=O

(3.3.11)

Assume the r-th absolute product moment of Z exists:

f'o'f lZlZe...Zkl r da(_,Z2, o..Z k) < oo, r > 2 (3.3.12)

Then, Lemma 2°4° 3 can be directly extended to k dimensions. This results

in the bound

a a r
a. = a < Be/(jl...jk) , (3.3.13)
--J Jl. •'Jk -

I
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and we have

Theorem 3.3.2: The MISE of the estimate is

oo _O

J = E S (f(x) - _n(X))2dx = Z "''Z a2,n -- Jl" •"Jk

j1=q+l jk=q+l

q q

+ Z'''Z E(_j . - .jk) 2z • "Jk aJ1""

Jl=0 Jk=0

With (12) and Lemma 3.3.1 holding, we obtain the _ound

k

J <B6( z 1 +_)k+_t__
n -- (r-l) qr-i n

(3.3.1_)

1

Choosing q(n) as the largest integer i (Ben/ca) rk , the MISE satisfies

r-1

Jn = O(i/n r ). (3.3.15)

This is the same rate as in the univariate case. Naturally, the actual

bound is different. The constant B 6 in (14) is now the L2 norm of a

function defined in Rk. This function is

r

-1 Z r: (_lej_..._k2Jk)
(g(xl;_l)...g(xk; _k)) Jl'.Je'.... Jk"

r
d

dXl ji... dxkJk

[f(x_...Xk)g(x_;__)...g(xk;_k)] ,

k

where the summation is to be taken over all possible integers with L Ji

i=l

= ro

I
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To investigate the mean-square error, define the function

q q

fq(x)=II
Jl=0 jk=O

ejl...j k @j(xl/_l)... mj(Xk/a k)

(3.3.16)

As in the one-dimensional ease, this function converges to f(x) pointwise

and uniformly in any finite interval. In particular, with r > 3, we have

the bound

k

+r -i r -i "
If(x) fq(X) l < e2J_o -1) q _ q2

(3.3.17)

In analogy to Corollary 2 4.1, we obtain

Corollary 3.3.1: Assuming that Lemms 3.3.1 holds and that (12) is true

with r > 3, we have

E (fn(Xn) f(_n) )n

2

+ +c2 q
-- r r
< _ -11q_ -i q.g

(3.3.18)

i/rk

Upon choosing q ~ i/n , as n ÷ _, the mean-square error satisfies

r-2

En{(_n(X n) - f(Xn))21: O(i/n r )
_ _ _

(3.3.19)

Observe that this is the same rate as in the univariate case.

I
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3o3 c The Eigenfunction Representation

We shall assume that the covariance matrix of the noise A is known

and that the observation vector is "pre-whitened," i.e., we apply the

transformation A -I/2 to the observation vector X_. The new data vector

is A _ + o What this does is to make the resulting gaussian

noise samples within an interval independent. The noise vectors in

different intervals are still correlated with a cross-correlation matrix

-1/2 -1/2
equal to A B T A Note that the characteristic polynomial for

2
r remains the same. Hence, Corollary 3.2.2 is applicable without change.

We assume that the data is pre-whitened without changing notation.

The density function of the observation vector is

f(Xl, o..X k) = f°"f g(xl-zl;1) o..g(Xk-Zk;1)dCZ(zl...Zk) (3.3.20)

which we write as

f(__) = J gk({-_;Z)d°<_)
z

(3.3.2l)

With _j(£) given in terms of the Hermite functions

_j(__)= mj=(z_/_=)_j2(z2/_)oo._jk(Zk/_), (3°3°22)

where dl> i, define

IAII that is necessary is to transform the data vector so that the result-

ing covariance matrix is diagonal° For purposes of notation, it is more

convenient to have the resulting covariance matrixequal to the identity

matrix° Hence we use A-I/2. Since A is (strictly)" positive definite,

A-I/2 is well defined.

I
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d °

--3 = djm.o.j k _ .(z) d(_(z)
z J

The coefficient dj is uniformly bounded in j and z,

k

J!j] = !djl...jkl <_ c

I

I

Le t,
k

< 2}i xik/_. exp (_3+i)(_i_-i)
i=l

I and define

I ola-i

_12+i

I 2
7

(ei2-1)(_i2+l)
=

2

(_l

I
I

I

I

In analogy to section 2.5, we obtain the expansion

_(x)f(m): _, °°" (_J_-'"°_-a_)dJ_'''Jkmj__(xl/7)o..mjk(xk/7

Ji=O jk=O

j= !j ! mj(x) .
J

I

I

This series converges in mean-square and uniformly in x.

the uniform bound

k

q ( 2 _ q+l )Js(x)f(x) - _% ! j mj(x)[ _< $ _i 7 (i-i)

I { ci2 _q+l i k

I :_ in)_'-_))

(3.3.23)

(3.3°24)

(3.3.25)

(3-3.26)

(3.3°27)

We also have

(3.3.28)

I
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The unbiased estimates of the coefficients are

n

_J^ ! Idjn = n qD.(XL)s(X_)
- j

_=i

Using Corollary 3.2.2, we have

(3.3.29)

Lemma 3.5.2: Assume that R(t) satisfies condition B and that the sequence

(Z_} is M-dependent. Then, the variance of the estimate is dominated by

v(_Jdj) < 2 c4 + Bs(k)_ 2B2 + 2(M-I) = cs/n • (3.3.30)
-- - - n

where c4 is defined by

C1 ,l_j(x)s(__)l<_ i/4J7

114 k

k

cl 1

k/4 (_,_)k/2
= c 4 (3.3.31)

The estimate of s(x)f(x) is taken as

A

s(X)fn(X)

q q

I 7, _(jl+'''jk) ^= ... djl., .Jkl _4(X_°l ) •'"_(Xk /

j_=o jk=O

(3.3.32)

j=O

In analogy to Theorem 2.5.2 and Corollary 2.5.1, we have the follow-

ing results.

Theorem 5.5.3: Under the hypothesis of the previous lemma, the MISE is

dominated by



I

I
I

I
I

I
I

I
I

I
I
I

I

I
I

I
I

I

142

j' = E I(s(x)_(x)- s(__)_n (x))2 dx
n -- -- -- --

k

< c_ _2 + c_a!q
- _i/2 _(i_2) n

1
Choosing q(n) as the largest integer <

-- 2k

_n n

fin_I
, we have

2 k

' < cl )_ I + c_ (Lnn)klJn -< 1/2 1 (i-_2 n ( ILn_ 12k )k n

(3.3.33)

, (3.3.34)

or

J' : O((In n)k/n).
n

Corollary 3.3.2: Under the hypothesis of the previous lemma, the mean-

square error in the estimate of the random variable s(X_n)f(X_4q) is bounded

( 2 _q+l k k _n_ _-
< c_ . ) + ( )Cl qk

-- J_ (o14-1)(14)

(3.3.35)

Letting q be the largest integer _ c7 +
In n

2kl _n_l
gives

En( )

2 C7

(_4-1)(l-_)

k

+

(3.3.36)

or_

En( )
= O((ln n)2kln) •

I
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The constant c7 is not given explicitly as in (2.5.33), but would be de-

termined by minimizing (36)°

3 o3d The Gaussian Kernel

The estimate of f(x) is taken as

n

fn(X) = n gk (x-XL ;H)

_=i

(3.3.37)

2

With H a diagonal matrix with i-th entry equal to hi, (37) is just the

k-dimensional version of (C.I). We take H as this diagonal matrix°

The expectation of the estimate is

E _n(X) = f d_(Z)gk(x- z; A + H) (3.3.38)
Z

As in section 2.3a, the bias is dominated by considering the expression

/%

(Efn(X) - f(x)) and expanding in a Taylor series. Since the kernel gk(_Y;H )

is an even function in [, the first and mixed second derivatives drop out.

• + o; i=13...k;We obtain, as n + _ and h I

k

i )k/2 _ a2f(x)E _n(X)-f(x) ÷ [ (2_-- _ x2. hi2 + O(h i )o

i=l i

(},3 _39)

The variance expression is

V(fn(X-)) =-1 { E(g2(x-X;H)-n [E(g(x-X;H)_}

n n

+2 Z-2
n

=i m=L+l

E( g(x-X_; H) g(x-Xm; H))

!
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-E( g(x-X L ;H) Eg(x-_Xm; H)7
(3.3.40)

Using (38), the first bracket is bounded by

! 2_) (h_.-.hk)la+ I + 2_)kla + HI .
n

(3.3.4_)

For the second expression, the term inside the double summation is given

1
by

Qm-2=7 f dG(zl)dG(z--2) _2k(X-Zl,X-z2;M+H) -

Zl Z2

g2k(x_-z_,x-z2 ;N+H)3 " (3.3.42)

.., F__jo_-i_
M and N have the same meaning as before, and H = LOl

Since M+H is

positive definite# we can apply the transformation of the previous section

to the expression in the bracket in (42). We then dominate the resulting

expression using Mehler's formula and Cramer's bound (see(C.8) and (C.9)).

The result is,

%-L = QT -< (_) 1 + n (3.3.43)
. i=l l-ri, T

The ri,2T are the roots of I(A+H) -I BT(A+H) -I BT'- r2Tl.

3.2.2 to obtain

Use Corollary

2 _ _, 2 k G2Bs(k)B 2-7 Q_L <(_)
n - - 2_ n

L m

i

Here, we assume the sequence [Z_L} is independent.

I
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The constant B8(k ) is defined differently since A(k) is now the bound on

-i
the elements of (A+H)

The variance is dominated by

V(_n(X) _ e k 2 1 1) < i c_) Ba(k)_Be + )k JA+HI- - n 2_ (2_

+
i i

(2_)eklA+_1 (hz...h k)

: b__+ b.2. "7
n n( hl...h k) J

(3.3.44)

Adding the square of the bias error to (44), the mean-square error is

E__(f(x) - _n(X))2}

k

b_A_1+ be + F he h2
--< n z_J bij i j

n(hlh2. •.hk) i,j

(3.3.45)

where the bij are constants which bound the second partials in (39)°

We have not made much progress in selecting the set h i so as to minimize

(45)° The obvious thing to do is to set hl .... hk=h. Then, it is easy

to see that h is chosen proportional to i/n I/(k+4) and

E{(fn(X)-f(x_))2_,l_ = O(i/n 4/(4+k) )
(3.3.46)

From the way in which we have taken the estimates, it is not surpris-

ing that the assumptions needed to specify a rate of convergence (for all

three methods) are direct extensions of those needed for the univariate
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case° Thus, throughout this chapter we have assumed that the covariance

matrix M T is (strictly) positive definite. In Chapter 2, we required

the same thing by taking IpTI < i, ioeo, for k=l,

and !@TI < i implies that M
T

is positive definite.

To use the eigenfunction representation, we take the covariance matrix

A as known. For the L 2 series, we require a product moment assAnnption in

order to specify a rate. Again, no knowledge of the underlying process is

required to form the kernel estimate or to specify a rate of convergence°

The eigenfunction representation gives essentially the same i/n rate as

in the univaria.te case: for the MISE we have the rate (in(n))k/n and for

the mean-square error we obtain (in(n))ak/n. With a r-th product moment

assumption on the vector Z, we obtain the same rate of convergence for

the L2 series as in the univariate case° The kernel method now gives a

slower rate--the reason being that the bias in the estimate is still O(h 4)

while the variance term is now O(I/hk).
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C HAI_TER 4

APPLICATIONS OF THE EMPIRICAL BAYES TECHNIQUE

4.1 INTRODUCTION

We now apply our results to some problems in communication theory.

As discussed in Chapter l, we will be concerned with procedures which

converge to what we have called the optimum one-stage test. To reiterate,

this test uses only the present observations for the present test and,

as such, is truely optimum only when the sequence of observations is

independent. The empirical sequence of tests makes decisions on the

same basis as the one-stage procedure, but it incorporates all past

observations in updating the estimate of the test function. Further-

more, we will take a sequence of tests, the test function of which is

identical in structure to the test function one would use if all dis-

tributions were known. It does not follow, especially in the small

sample case, that this is the optimum thing to do. What we expect

to show is that when we are repestedly faced with the same decision

problem, our sequence of test functions will get closer, in the mean-

square sense, to the one-stage test. It then will follow from the

results of section 1.2 that the empirical risk will approach the risk

incurred by using the one-stage procedure.

So far, we have considered estimating the marginal density function

of the observation which, in general, can be written as

lh7
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f(x) = fg(x-z;o)dG(z). What remains is to show that we can extract

from the estimate of f(x) those quantities needed to form a consistent

estimate of the test function. In the supervisory mode_ there is no dif-

ficulty in finding these consistent estimates. Since we have available

samples which are correctly classified with probability onej we can esti-

mate the particular density fj(x) from which it was drawn. As would be

expected 3 obtaining consistent estimates of the test function is more dif-

ficult when operating under a nonsupervisory condition.

In the remainder of this section_ we discuss the problem of trans-

mission through s random unknown channel when learning samples are

available. This problem relates the results of section 1.2 on the

convergence of the empirical procedure with the results on density

estimation. It also serves to indicate when we can expect to find

a solution to the nonsupervisory problem.

In section 4.2 we consider the problem of transmitting known

signals with unknown a priori probabilities.

The problem of communication through a random multiplicative

channel is considered in section 4.3. This problem is discussed in

some detail since_ for the case of small nonlinear distortion# a first-

1
order analysis reduces to an analysis of a multiplicative disturbance.

lone of K signals_ Yi(t), is transmitted with gaussian noise added to

a distorted version of the signal. The received waveform is x(t) =

n(t)+yi(t,T)_ where T is, say, a random delay with known mean value To .

If, for example, the variance of T is small_ we write T=TO+AT and ap-

proximate x(t) by x(t)=n(t)+Yi(t,To)+AT(_/_T)Yi(t,T )IT--T-" Then, AT
-

is taken as a zero mean random variable with an unknown dlstribution.

I
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A problem with an unbounded loss function is discussed in section h.4.

4.1a Communication Through an Unknown Random Channel--Supervised Learning

Suppose we transmit one of two signals, Yo(t) or yl(t), with 8

priori probabilities Po and Pl = I-P o. The signal is passed through

a random unknown channel. We take the output of the channel to be a

stationary random process Zo(t ) or zl(t), depending on which signal

was transmitted. The received waveform during any interval is then

x(t) : n(t) + zi(t), i:O,1, _ < t < (_+l). (4.i.i)

The density function of a single time sample is

f(x)--Po fo(x) + P_ f1(x) (4.i.2)

where

f (x) -- fg(X-Zo;_)da(zo) (4.1.3)O

fl(x) = fg(x-zl;_)dB(zl) • (4.1.4)

The distributions G and B are taken as unknown and may or may not be

1
related.

The statistical inference problem is to decide, with minimum proba-

bility of error, which of the two processes Zo(t ) or zl(t) is present

IG and B would be unrelated if, instead of transmitting known signals

through a random channel, the problem was one of sending one of two

unrelated randomsignals to which gaussian noise is added.

I
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during each interval. The one-stage procedure is to evaluate the test

function

T(x) = p_ f_(x)- Po fo(x) (4oio5)

and compare it to a zero threshold°

Suppose that we ha_e an estimate of T(x) and, after we have made

a decision, we are told whether or not the decision was correct. In

this "supervised learning _; situation, we can use the observation to

update the estimate of the density function from which it was drawn.

We now have a better estimate of the particular density and the test

function which we subsequently use for the next decision° Assuming

Po is known, the error in the estimate of the test function after_the

n-th decision would be

,% A

Tn(X ) - T(x) = p1(fl(x)-flnl(X))-po(fo(X )-fono(^ X))

(4°1o6)

n i is the known (after a decision is made) number of occurrences of

Yi(t) in the n intervals, no+nl=no Let_'inj=En_(fi(X)-finj(X))_ .

Then, by the Minkowski inequality, we have

_T Xn) _ ~ ~ 2 aEn n( -T(Xn)) < (Pl Yln! ._ Po Yo ) = yn (4ol.7)

o

Hence, to guarantee that Yn tends to zero, say at the same rate as for

the case of independent samples, we need to require that the autocor-

relation function satisfy condition B, e.g., it be integrable and

I
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eventually monotonically decreasing. In addition, we need a weak de-

pendency amongst the samples derived from zi(t) as reflected in Theorem

2.2.2. Furthermore, to guarantee that the probability of error Pen

converges to Pe (the probability of error using the one-stage test),

we also require that (see Theorem 1.2.2)

a) fi(x)/ 0 a.e.x, i:O,l,

and to be able to specify a bound on the rate of convergence of Pen

it is sufficient to assume that

b) fi(x) is analytic, i=O,l

c) fi(x), i=O,l are linearly independent, i.e., unequal.

From (3) and (4), we see that conditions a and b are satisfied

as g(x-z;o) is non-negative and analytic. If _ and 8 are unequal then

condition c will be satisfied.

We will illustrate the estimation procedure with the eigenfunction

representation. As in section 2.5, define:

dj = _ mj(z/ol)d_(z)

--OO

= Jcpjej (_/o_)d_(z)
--OO

2 2
2 01 - 0

- 02012+

I
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2 2 2

7 =
O-12

Multiplying (2)-(4) by

(4.1.8)

s(x) x2 j!_)2
exp-7 (_7

gives

(4.1.9)

oo

s(X)fo(X): f

j=O

oo

s(x)f_(x)=

j=O

oo

s(x)f(x) : f

j=O

J

dj _j(x/7)

_J ej _j(x/7)

_J (Podj + plej)q0j(x/7)o

A test function equivalent to (5) is given by

(4.i.iO)

(4.i.ii)

(4.1.12)

oo

s(x)T(x) f (plej-Podj) _j: _.(x/_)
J

j=O

(4.1o13)

Operating under a supervisory eondition_ we make a decision and

i

then we are told from which population X n was drawn. Assuming Xn was

drawn from fl(x), we then update the estimates of ej as in section 2°5.

At the end of the n-th decision_ our estimate of the test function would

be

i
Perhaps more appropriate to communication type problems, learning samples

can also be provided by transmitting a known sequence yo,yl,yo,yl, etco..

interspersed with the message sequence.

I
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(x/7)
Pl ejn I q)j

j=0

q°Ln°)-Po d. _J q0j(x/y)
Jno

j=O

(4.1.14)

Supposing that each qi(ni) is chosen as in Corollary 2.5.1, we obtain

the bound

En (Xn) (Tn(Xn)-T(X n) = (Tn)2 = 0(inan./n.> , (4.1.15)

where n. = min(no_nl)o Hence, from Corollary 1.2.2_ the difference

between the probability of error of the empirical procedure and the

one-stage procedure is bounded by

2
T

2(7n)

0 _<_Pen -Pe -< ( 2 + 5'(E)) (4.1.16)
6

where 5'(e) = Pr s(x)T(x)l < and (?,n) is given by (15). Therefore,

with the above assumed dependencies on the observations, Pen converges

2.

at the rate in n./n..

Recall that the constant _l is chosen greater than _ but otherwise

arbitrary. We would naturally choose 6z to minimize the difference

and P To illustrate how _z enters into (16)_ supposebetween Pen e"

we truncate the series (14) at q+l terms° Then, using the bound in

2
!

(2.5.37) for (7n) , the asymptotic difference in the probabilities of

error is dominated by
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4 I 2 2)2q+%c_! i <o_ -o + 5'(_)

o <-n_lim_n-Pe _ L_ _ (o2+o2)2q+3_3
(4.1.17)

The closer oi is to o, the smaller the first term of (17)o

hand, from (8) and (9) we have

s(x) o exp

On the other-

and 5'(e ) is seen to increase as oi approaches 0.

One possible procedure to follow would be to choose oi so that

5'(e) is less than some preassigned small number &. Then, q is chosen

large enough so that the first term of (17) is also less than A.

When more than one sample is used to base a decis{on, the assump-

tions and results are direct extensions of those for the univariate

case. Thus, if we took k samples for each decision, Pen would converge

2k
to (a smaller) Pe at the rate O(in n./n.).

This discussion assumes that we operate in a supervisory mode and,

if one is willing to use a one-stage (or finite-stage) test, the pro-

cedure just outlined is straightforward and provides a solution to a

variety of problems. 1 However, the above formulation and solution are

llncluded in this formulation is the case of non-coherent communication.

By restricting attention to a one-stage test we do, however, exclude

the case of intersymbol interference.

!
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not the best we can do. The above procedure has eliminated the signal

design problem--the known signals Yo(t) and y1(t) do not influence the

convergence of the procedure. This has come about as we have neglected

the relationship between (_(Zo) and 8(z_). A relationship certainly

exists as the channel presumably distorts both signals in the same manner.

That some relationship between G(Zo) and 8(zi) must exist and be

utilized in order to learn when operating in a nonsupervisory mode is

almost obvious. For, with no knowledge of the relationship between

G and 83 there is no way to extract from f(x) consistent estimates of

fo(X) and fl(x). In contrast, if G and 8 are equal then fo and fl are

also equal and there is no longer any statistical inference problem.

It is somewhere between these two cases where solutions to the non-

supervisory problem are to be found.

One such case is the transmission of known signals through a

random multiplicative channel. We consider this problem in section

4.3 where it will be seen that the nature of the signals enters into

the bounds and, in fact, determines whether or not consistent procedures

can be found in the nonsupervisory mode of operation. For the super-

visory mode, the rate given above in (15) will be improved upon with

n replacing n.wthe point being that, in some cases, both sets of

coefficients, d and e can be updated at each stagej j'

4.1b The Detection of Noise in Gaussian Noise

We want to mention a somewhat different application of the eigen-

i
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function representation_ the detection of noise in gaussian noise

when all distributions_ including the a priori probabilities, are

known. The application has the unusual aspect of incorporating a test

procedure which is sequential in the number of terms of the series

used for the test.

For simplicity, we restrict our attention to decisions based on

a single sample. Using the notation of the previous sub-section,

assume one of two random processes, Zo(t) or zl(t), is transmitted

with a priori probabilities Po and Pl. With the distributions

_(Zo) and _(zl) known then, in principal, the coefficients dj and

ej are known. The procedure which minimizes the probability of an

incorrect decision is to evaluate (13) and compare it to a zero thres-

hold.

Consider truncating the test function at q+l terms,

q+l

s(x)Tq(X) = _ (plej-Podj)_ j qOj(x/y) (4.1.18)

j=O

From (2.5.13), we have the bound

q 2 q+l

_J c_[s(X)fo(X)- djqOj(x/y) l <_

j=o J_17 1-_

(4.1.19)

with an identical bound for the truncated series for s(x)fl(x)°

the difference between (13) and (18) is dominated by

Then,

I
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q+l 2
Is(x)(T(x)-Tq(X))i< _ _ c_ _q-1/2 (4.1.20)

_ l-_ ,/_(_+_) l-_

Hence, if for a given observation X, the value of s(x)Tq(x) is greater

in magnitude than the right side of (20), the decision using the trun-

cated test function is the same as when the complete series is used.

Again, we would not pick Oz arbitrarily close to _ so as to make

arbitrarily small. All this does is scale down the possible range

of values of s(x)Tq(X) and s(x)T(x). Specifically, from (2.4.3), we

have

g(x/7)Hj(x/7)

: (2.4.3)_j(x/7) j2jJ:/_

and s(x)Tq(x) becomes

s(x)Tq(X)- 1 exp x2 i _l _J

Hi(x/7)

(pzej-Pod j) _ (4.1.21)

Having fixed the value of ox, the procedure would be to evaluate

the first qz terms of (21) and compare the magnitude to (20). If the

magnitude is greater than (20), we announce hypothesis Hz if s(x)Tqz(X )

is positive and H o if it is negstive. If Is(x)Tqz(X)I is less than (20),

compute another term of the series and recycle. In this manner, we

expect to eventually make s decision which would be identical to the

I
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decision based on the original test function. The value of q at which

the procedure terminates is a random variable whose distribution depends

on the value of _l chosen, the coefficients dj and ej, and the observa-

tion X.

There is no theoretical difficulty in extending the procedure to

a finite number of samples. We use the nonsingular transformation A "1/2

to whiten the gaussian noise. Then, for example, the vector _o is

transformed into _o with a distribution G(A1/2z ). The difficulties,
--o

of course, are in inverting A snd in calculating the coefficients d..
--j

4.2 MULTIPLE (SIMPLE) HYPOTHESES WITH U_0WNA PRIORI PROBABILITIES

We consider the problem of detecting one of K+I known signals when

the a priori probabilities are unknown. In each time interval,

! <_ t_<l+ i, L = %1,..., a signal yj(t) is chosen with a priori

probability pj, j=0,1,...K. Zero mean, correlated gaussian noise is

added to the signal. The received waveform is then x(t)=n(t)+yj(t).

In the next sub-section, we consider the detection problem with a finite

number of time samples. In sub-section 4.2b, the Karhunen-Loeve ex-

pansion is used to obtain limiting forms.

_.2a Finite Number of Observations Per Decision

Under the J-th hypothesis, the density function for k time samples

_=(xl,x2,...Xk) is given by

fj(x) = gk(x-zj;A) (4.e.l)
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where A is the non-singular covariance matrix of the gaussian noise

vector n, and yj represents the k samples of the signal yj(t). The

overall density function is

K

f(x) = _, pjfj(x).

j=O

(4.2.2)

For a minimum probability of error test based on k samples, as

discussed in section 1.2, we form the (K+I) test functions

Tj(x) = pj fj(x) - Po fo (x), J = %1,..oK. (4.2.3)

The decision function is tj(x) = i if Tj(x) > Ti(x), i = %1...K, and

tj(x) = 0 otherwise.

Suppose that the set of a priori probabilities are unknown. Then

in (3), we use estimates of these quantities which are updated in every

transmission interval. In the n-th interval the error in estimating

the test function is

@nj(X_n)-Tj(X_n) = (Pjn-Pj) fj(X_n)-(Pon-Po)fo(X_n),J=O,l...K.

(4.2.4)

which can be cancelled out of the K+I test functions. We assume this

has been done in (4), but keep the notation unchanged. Since fj(x)

A

X_n denotes the n-th sample vector --nX= [Xzn'X2n°'°Xkn]" Pjn" is

naturally a function of all the observations [X_}, _--t,2, ....

Observe that fj(x) contains a common factor (l/(2_)k/21al 1/2)
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a

is a bounded function, for any unbiased estimate Pjn, we have

n_ )2 _ X_ _ 2_)k/2iAl1/2E jn-Pj fj( <_ V(Pjn) /( (4.2.5)

The mean-square error of (the modified) equation (4) is dominated by

En {@nj (Xn) -T j(&))_<_ ( _
+ jV(^ )2 2

Pon) = 7jn, J=l,2 ,...K.

(4.2.6)

Notice that we begin the index at j=l since we would naturally set

A

Tno(X)=0, which equals To(X ).

The inequality in (6) is the bound we need to dominate the dif-

ference in the probabilities of error. Let Pen be the probability of

error using the empirical procedure and Pe the probability oT error

when the a priori probabilities are known. In analogy to the equation

above (1.2.40) and to (1.2.46), which are valid for one sample per

interval, we have for k samples per interval:

K

I Pe = l-Po -_ /Tj(x)dx

j=O Aj

and

I

I

I

:A :Tj xl  ilxli:o,l,5__,
(4.2.7)

I

I

I

_ y2(?'On + 7u ( )n )2
0

0 < Peu-Pe < e2
- - L ju(j)

j=0

+ 5ju(j)(eju(j) )_ (4.2.8)

with 7on set equal to zero. The subscript u(j) plays the role of k in
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(1.2.46) since, in this section, k is the number of observations per

interval. In addition, here we let u=u(j) depend on the index j.

The reason for this is as follows. Recall that eju(j ) is an arbitrary
/--

constant and 5ju(j)= PrJ'ITj(x)-Tu(x)l < eju I One would like to

choose the subscript u, u(j)=0,1,...K, so that 5ju(j ) is a minimum for

each j. This involves solving for the roots of Tj(x)-Tu(X)=0 in terms

of the signals and a priori probabilities and then, perhaps by lineari-

zation of T -Tu, obtaining bounds for the 5ju in terms of the signalsJ

yj and y .--U

!

There remains to estimate the pj s so as to bound the difference

-P . To do this, we proceed as in section 2.6. We use the sequencePen e

of observations Xin with i fixed (e.g., the first component of each

A

observation vector) to obtain an unbiased estimate Pjn" Assuming the

samples of the signals are distinct, Yij+Yijl,j,ji=O,l,...K and

i=l,...k, there are k such sequences available which give k unbiased

estimates of pjo These are then combined in a linear fashion.

Taking the sequence of observations xi_,_=l,2,...n, the density

function of xi_ is

f(xi_)

K

= _. Pjg(xi2-Yijf;O)

j=O

We assume the samples of the signals, Yij' j=0,1,...K, are distinct.

Then, the estimate of pj is taken as (see (2.6.6)):

!
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n

iZ41= n xi_)

£=0

K n

Z- n hjv g(Xi_-Yiv_;O) , j=O,I,...K.

v=l l=l

Now, assume that the autocorrelation function of the gaussian noise

is integrable and eventually monotonically decreasing (condition B).

Assume further that the signal transmitted in a particular interval

can depend only on the signals transmitted in the previous M-I intervals

(M-dependence). Then, the hypotheses of Corollary 2.6.1 hold and we

A

obtain V(Pjn)=O(i/n ). Using this in (8), we have Pen converging to

Pe at the rate I/n. Convergence also takes place at the i/n rate with

an "infinite transmission memory" if the conditional a priori proba-

bilities satisfy (2.6.10) with _=0.

A

The above procedure gives no guarantee that the estimates Pjn

are probabilities. In practice, we would want to normalize the estimates

K
A

so that 0 ! Pjn ! i and Z _jn=lo
j=O

4.2b Limitin_ Forms

The application of the empirical Bayes procedure to the finite

sample case is straightforward. This is not so when limiting forms

\
are considered. To use the Karhunen-Loeve expansion, we make the follow-

i
ing definitions:

iSince all processes are stationary, these definitions hold for any

interval. For the properties of the expansion see [ii].

I
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R(s-t) _.(t)dt = k._.(s), 0 < s < l,j=l,2,...
J J J - __

0

i

xj = _x(t)_j(t)dt

O

i

n = _n(t)_j(t)dt
J

o

1

Yij =_Yi(t)_j (t)dt' i=0,1,...K.

O

We then have as the first k observations

(4.2.9)

xj = n.j + Yij' j=l,2,...k ,

and it follows from a property of the expansion that

E(n.n.) = O, i _ j
j i

kj, i=j

Since the nj are uncorrelated gaussian random variables, they are

independent. Hence 3 under the i-th hypothesis, the density function

of the first k observations _ = (xl...Xk) is simply the product of

k univariate gaussian density functions

fi(_):fi(x_...xk)

(2=)k/2(_,_.. "_k)l/2

1
(
xj -Yij )2k.

_J ]
!

(4.2.1o)

i
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Define the functions

k 9kl(t)V_ Yikl

Vik(t) = L , i=O,l,...K; 0 < t < Ikkl -- _

kl =i

(4.2.11)

and the inner products

1 k

(Vik, X) =/Vik(t ) x(t)dt = _ YiklXkl
kk I

o kl =i

l k 2

(Vik_Yi) =/ Vik(t)Yi(t)dt = _, Yikl
kk_

o kl =I

, ±:O,...K. (4.2.12)

(4.2.13)

Now; it is more convenient to take the test functions as the ratio

Tj(x) : _9_ fJ(_) , j=O,...K. (4.2.14)
Po fo (x)

The decision function remains the same. Cancelling common factors in

(14) and using the above definitions and (i0) yields

Pj
=--exp - !

Tj(!) Po 2 _2(Vjk,X)+(Vjk, Yj)

+2(Vok,X)-(VowYo)) •

Since the logarithm is a monotonic function we can just as well use

inTj(x) in the test.

in Tj([) = in(pj/Po ) + (Vjk-Vok,X) +

(Vok,yo)-(vjk,Yj)

2

(4.2.15)

We shall assume

I
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< _ , i = 0,... K. (4.2.16)

Then, it is known ([32]) that:

i) the series in (12) converges with probability one

lim (Vik,X): (vi,x):_ Yik_Xkl
k-_o Nkl

kz=l

< _, i = O,...K.

(4.2.17)

ii) Vik(t) converges to an L2 function v (t) which satisfies the
i

integral equation

1

R(t-s)vi(s)ds : Yi(t),

o

0 < t < i, i : O,...K. (4.2.18
-- m

Since we are assuming that the autocorrelation function is strictly

positive definite, the solution to (18) is unique.

Define the random variables

w i : _ x(t)vi(t)dt , i : O,...K. (4.2.19)

o

and the quantity

i

uij : (vi,Yi) =_vi(t) Yi(t)dt.

o

(4.2.20)

The (gaussian) random variable w is the output of the filter
i

I

uij can be thought of as the signal correlation to noise ratio° The

white noise case gives: R(t):NS(t)_ uij : fo,Yi(t)yj(tldt/No, and u.11.:
signal energy/noise power density [per cycle).

I



I
i
I

I
I

I
I

I
I
i

I
I

I

I
I

I
I
i

166

matched to the signal Yi(t).

The logarithm of the test function is now a function of the

random variables (wj-Wo). Taking the limit as k ÷ _ in (15) yields:

in(Tj(wj-w o)) = in(pj/Po )+(wj-w o)+

U --U, °

oo Oj (4.2.21)

The error in the estimate of the log of the test function is simply

A

In(T .(w.-w )) - in(T.(w.-w ))
nj j o O j o

in(_ /_ ) - In(p./p )
jn on J o

in(_. /p.) - in(_ /p ) (4.2.22)
jn j on o

To form the estimate of pj, consider the output of the r-th matched

filter during any time interval _ < t < (_+I). Assuming the i-th

hypothesis to be active during this interval, the received waveform

is x(t) = n(t)+Yi(t), and w r is a gaussian random variable with mean

value Uri and variance equal to Urr. Averaging over all possible

hypotheses, the density function of the observation w r is

K

_, ) (4o223)f(Wr) = Pi g(Wr-Uri" _rr

i=O

The only difference between the situation here and in section 2.6 is

that the correlation between the random variable (Wr-Uri) in different

intervals is not given directly in terms of R(t). We do, however, have:

i
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m+l L+I

E __(WriL-Uri)(WrimUri)} =/ /E(n(tl)n(ta))Vr(tl)vr(ta)dtldt 2

m L

1 1

= / /R(m-L+t2-tl)Vr(tl)Vr(t2)dtldt2

0 0

(4.2.24)

If we assume that R(t) satisfies condition B ((2.2.23)), let T:m-L,

and denote (24) by u PT' then,
rr

[/ t}in Z Ip_l _< _ B2 [Vr(t)Id
Urr o

G 2 2

< -- B2b r ,
-- U

rr

2

(4,2•25)

• /where b r is a bound on the Ll norm of Vr(t ) Since Ivr(t)fat <
0

<r I Var(t)dt} I/2o , we can set b equal to the Le norm of Vr(t ). From

the definition of Vr(t ) and the previous assumptions, this norm is

finite.

Using the output of the r-th matched filter, we take as the estimate

of pj

n

^ iZPin = n" WrL)

_=l

K

lZ_ no.

n Jl

i=l

(4.2.26)
n

Z g(WrL-Uri; u_F_rr), j = I,...K.

_=i

wrLis the output of the r-th matched filter during the L-th interval•

As in section 2.6, these estimates are unbiased. In analogy to the

previous case of time samples, assuming the sutocorrelation function

I
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satisfies condition B and that the signals satisfy an M-dependency,

from Corollary 2.6.1 and (2_), the variance expression is dominated

by

2 _2 2

^ 2 ca(j) B2 br +V(Pjn ) < (i + -- 2(M-I))
-- n 2_ u Urr

rr

_2

= 7jn , j = I,...K. (4.2.27)

To calculate the mean-square error in the estimate of the test

function (22), we proceed as follows. Since A
Pjn converges to pj in

mean-square, it converges in probability:

Pr ^ i-->ej <- n j

Consequently_ with probability greater than i-_2 /e2_
jn j

^

in(_jn/Pj) = in(l+(_jn_Pj)/pj ) = Pjn-P_pj + lp_ O(e2j) .

_A

Letting A equal the set of sample points which satisfy fAdP(co) > I-7._/e_,
-- jn j

it follows that

f in2(Pjn(C_)/pj)dP(00) < _ m. + O(e2.)
-- on J

A 2

Pj

(4-.2.28)

Upon applying the Minkowski inequality to the expected value of the

square of (22), it follows that, except for a set of experiments of

~ e2 ~ 21 2 (whichever is greater), theprobability less than 7jn/ j or Yon/eo

mean-square error in the j-th test function is dominated by
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2 2

En inTnj-lnTj) -< (7Jn + PJ+Po220(¢j))

PJ Po

, J--l,...K.

(4.2.29)

A

We have defined 7jn = (;jn/Pj+Von/Po) and as before, we set Tno(Wo-Wo)=O

which gives 7on=O. Letting 7n = max 7jn/ej, in analogy to (1.2.37),J

for this (equivalent) procedure we obtain: except in a set of experi-

ments of probability less than 7 2
n

the difference in the probabilities

of error is bounded by

K

0 _< Pen-Pe --< jn + 7kn + _2 20(¢j)+

J=O PJ Po

2 2

Pk+Po

O(Ek)_2 + 5jk(Ejk) }. (4.2.30)

~ 2 = O(i/n) Hence, Pen converges toFrom our earlier assumptions, 7in

Pe at the same rate, except for a set of possible experiments of prob-

ability less than 7 2.
n

To investigate the manner in which the signals affect the bounds,

we consider the case of binary communication, K=I. The difference in

the probabilities of error is then given by Theorem 1.2.2,

2 2
7n

0 < Pn-P < -- + 5(c) (4.2.31)-- e -- 2 '
E

where 7_n is defined below (29) with j=l, po+Pl=l, and 5(¢) is defined

as 5(¢)=Pr{IlnTl(Wl-Wo)l < ¢} .

I
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Suppose we only use the output of the j=O matched filter to estimate

Po" The bound on the variance of the estimate is

2.

~ _2 B2 bz (M-i)) (4.2.32)2 <_ 2_ c_(O) (i+ +2
u7on n 2_ Uoo oo 1-p.

where

c8(O)

1

= f Ihojl •
j=O

The h.. are the elements of the inverse of the Grsmian matrix G (see
ij

G-I(2.6.1)). For this example, is

e -1 =

f -exp -(Uoo-Uo_)/21o2

exp -(Uoo-Uol)/2Uoo

_Uo0 ( l-exp_- (Uoo- Uol )2/Uoo})

and c8(0) becomes

08(0) -
1 (i + exp _-(Uoo-Uol)R/2 Uoo})

2 fco (i - exp Uoo-Uo_)/Uoo , )

The variance of the estimate is written

~2 2 i q2 B2b_

: - (17- _+ 2M-i)(7on
n 8_eUoo 2 --oo l-p.

i + exp_-(Uoo-Uoz)2/2Uoo_

1 - exp{-(Uoo-Uol)2/Uoo } )

(4.2.33)

For purposes of illustration, let us assume that the sutocorrelation

I
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of the gsussian noise is approximately a delta function, R(t)=NoS(t ).

Then, Vo(t ) is approximately Yo(t)/No, and we have

i

bo _ J Vo (t)dt _ Uoo/N o = Uoo/q ,

0

and,

2 _ 2_ 1 (iB___.7°n n 8_2u 2 + 2M-I) (
O0

Roughly speaking, the variance of the estimate is inversely propor-

tional to the square of the signal-to-noise ratio. Consequently, in

combining estimates of Po from the two matched filters we would weigh

more heavily the filter corresponding to the larger signal energy.

For testing (K+I) hypotheses, there is a simplification when the

The signals Yi(t) are said to be orthogonalsignals are orthogonal.

if

uij

i i i

7 vi(t)Yi(t)dt =ff v.(t)R(t-s)vj(s)dtl ds = O, i_j

0 O0

For this situation, the density function of the output of the r-th

matched filter (equation (23)) reduces to

f(Wr) : Pr g(Wr-Urr; u_--_) + (l-Pr)g(Wr; u_r r)
rr

Hence, the output of this filter is used to estimate only Pr and

operationally, the procedure for estimating the a priori probabilities
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reduces to that given in the introductory example of section i.I.

4.3 TRANSMISSION OF KNOWN SIGNALS THROUGH AN UNKNOWN RANDOM MULTIPLI-

CATIVE CHANNEL

We now discuss the problem of detecting one of K+I nonzero known

signals which are passed through a random multiplicative channel. In

any interval, the received waveform is

x(t) =N(t)+Z_Yi(t); _ < t _< (_+i), i:O,...K , (4.3.1)

where the a priori probability of transmitting Yi(t) is Pi" The

signal is amplitude modulated by a random variable Z_, which may de-

pend on the previous Z's, but which is independent of the gaussian

noise. In this problem, we take the a priori probabilities, Pi'

i=O,l,...K, as known, and the a priori distribution of Z, _(z), as

unknown. We will mainly be concerned with learning in the nonsuper-

vised mode as the problem of supervised learning (with an arbitrary

channel) has already been discussed in 4.1. We will, however, point

out when the results in 4.1 can be improved upon for the particular

case of a multiplicative channel.

At the end of this section, we shall briefly mention the problem

where the received waveform is given by

x(t)=N(t)+Z(t)Yi(t); _ _< t<_(_+l), i=O,l,...K. (4.3.2)

Here, the signals are amplitude modulated by the (unknown) random

process Z(t).

I
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We start with the problem given by (i) and again derive limiting

forms via the Karhunen-Lo@ve expansion. Using the notation and defini-

tions of the previous section, from (4.2.9), the observations are the

Xkl,kl=l,...k. Under hypothesis Hj, the density function for the first

k observations in the L-th interval is

1 (Xkl-ZL Yjkl )fj(x) :
(2_)k/2(_..._2)I/2 exp k1:l _k_ d_(z_).

(4.3.3)

The density function of the observations averaged over all hypotheses

is simply

K

f(x) : ! pjfj(x). (4.3.4)

j=0

For the (K+I) test functions we take

pj fj(x)
Tj(x) - , j : 0,1...K. (4.3.5)

Po fo(x)

Cancel common terms in (5) and use the definitions in (4.2.11)-(4.2.13)

to obtain

Po

_f [exp-1 <_2z_(vjk,X)+Z_(Vjk,Yj)}] d(_(zL )

+_

(4.3.6)

I
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= _ Yjk_____m> 0, j=O,I,...K, we can complete the square

Since (Vjk,Y j) kz kkz

in z_. Define the random variables

(Vjk, X)
Wjk - , j : O,1,...K. (4.3.7)

(Vjk, Yj)

Then,

Tj(x)-

w2
+Li_

2 (Vjk'YJ)
Pj e

Po
w2
ok

+ -_- (Vok, Yo)

e

_- oo

--00

-_o

--00

(4.5.8)

We make the same assumption as before,

oo

Yjk_____

kl=l k_z

< _ , j=0,1,...K. (4.2.16)

Define

(Vok,X) (vj,x)
wj = lim Wjk = lim

k_ k_ (Vjk,Y j) ujj

(4.3.9)

In any interval, Z_ is just a constant. Hence, (4.2.16) guarsntees

that wj exists with probability one. Then, taking the limit in (8)

yields (by the bounded convergence theorem):

+oo

+ 1 uj .we f_jj e
e

+ 1 u°°w _e Z +_

7e

_ ! (wj-z)2 d_(z )2 ujj _ l

1 )2Uoo(Wo-Z_

(4.3.10)
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!

with probability one. The vj s are again the (unique) solutions to

the integral equation (4.2.18) and, since R(t) is assumed to be strictly

positive definite, we have ujj > o, j=0,...K.

For some of the cases we will discuss, it is more convenient to

use the logarithm of the test function. Defining

_,j(wj)= 42_/ujj'f g(wj-z_l/_C_jjld_(z_),j:o,..._,
--00

(4.3._i)

we have

1 2 2

ln(Tj(wj,w o)):ln(pj/p o) + _ (ujjwj-UooWo)

+lnLj (wj) -lnLo(W o) .
(4.3.12)

The test procedure is to pass the received waveform x(t),_ _ t _ ! + i,

through K+I matched filters. The gain of the j-th filter is i/ujj, and

the output (equation (9)) is w . The K+I w. are then used to evaluate
j J

the test function in (i0) or (12), with the signal corresponding to

the largest value being announced. This is the one-stage procedure to

minimize the probability of error when _(z) is known. To estimate the

test function in the nonsupervisory mode when _(z) is unknown, we first

obtain the density function of the wj.

Consider the output of the j-th matched filter in any interval.

Assuming hypothesis i is active, we have

1

(vj,x) i f t)(n(t)+zYi(t)dt (4.3.13)• - - vj(
wj ujj ujj 0

wj, given the value of z, is a gaussian random variable with mean value

I
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(zuji)/ujj and standard deviation i/u_jj The density function of

wj given that hypothesis i is in effect is

ujj

(4.3.14)

and averaging over all hypotheses we obtain

K

fj(w.) = £
J

i=O

_" oo

Pifg(wj'z uji ; 1/ufl_jj) d(_(z), j=O,...K.
-oo ujj

(4.3.15)

We have dropped the L subscript since the sequence {ZL] is sssumed to

be stationary.

4.3a Orthogonal Signals

We first consider the case of orthogonal signals.

for j_i, (15) reduces to

With uj i=O

+ (1-pj)g(wj;I/u_jj). (4.3.16)

In view of the definition of Lj(wj), we can write

Lj(wj) =4_ (fj(wj)-(l=pj)g(wj; i/qgujj)) .

Pj

(4.3.17)

Since ujj and pj are known, the unknown part of in(Tj) is in(Lj(wj)).

From (17), the problem of estimating Lj(wj)reduces to estimating fj(wj)
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and then subtracting off the known quantities. I Clearly, we can do

this under a nonsupervisory condition with either the L2 series or the

eigenfunction representation.

For the L2 series approach, we expand each of the fj(wj) in a series

as in section 2.4. Then, assuming the r-th absolute moment of the

random variable Z exists (r _ 3), the sequence Z_ is M-dependent, and

that R(t) satisfies condition B, we can apply Corollary 2.4.1 to obtain

A

En___fjn(Wjn)-fj(Wjn))5 = O(1/n(r-2)/r), (4.3.18)

where Wjn represents the output of the j-th filter during the n-th in-

terval. This bound is then used to dominate the quantity Pen-Pe.

Since (18) implies convergence in probability, one could proceed to

2A

dominate the expected value of in Ljn(Wjn ) as in the previous section.

In this manner, one could make a (probability) statement about the

convergence of Pen to Pe in analogy to the case in sub-section 4.2b.

A block diagram of the procedure for estimating Lj(wj) is given

in Figure 2. As indicated, the output of each matched filter is fed

into q+l devices to evaluate the first q+l coefficients. The oi for

each of the L2 series represents an arbitrary constant. If we picked

them all equal, we would not need q+l coefficient generators for each

iThe structure here is identical to the problem of binary on-off com-

munication through a random channel. In both cases, we are testing

a composite hypothesis vs. a specified alternative. The distribution

of the composite hypothesis is estimated by estimating the overall

distribution and then subtracting the known quantities.

I
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filter; the observations Wjn , j=0, I...K, could be processed serially

by the same q+l devices. We c_n also eliminate storing the first q+l

I Hermite functions by use of the recurrence formula

I _j+_(w/o)= 2___j(w/_)+ 2j_. l(_/o)
J

I

I
I

Since we have truncated the estimate of the series, there will be

an asymptotic error as given by (2.4.37). We have,

lira E _(fj(Wjn)_jn(Wjn))2_ {( i- < o2_B6 (r/2)-i
n -- r -i) q

n_

I

I
+ 7

qr 2

The constant c2 is cI/(_ I/4 _). Recall that Cl is Cramer's bound and
J

I

I

_. is the arbitrary constant. B 6 is the L2 norm of the function given
J

below (2.4.21). Both the signal-to-noise ratio ujj and qj enter into

B e •

I

I

We now use the eigenfunction representation for the same problem

of orthogonal signals. From (16) and (2.5.11), fj(wj) can be expressed

aS:

I

I

OO

fJ(_J): sj(_j_) _ (pj_].dj_+ (1-pj)bji)_i(wj/7j) (_.3.19)
i=O

where

I i
I 2

e w. ujj
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2
ujj _j-1

J uj j _+i

2

7j

2 l)(uj 2(ujj_j j_j+l)
2 2

U..(_.
JJ J

and

dji : I mi(_/_j)_(z)

The bji are the Fourier coefficients of sj(w)g(w;1/$ujj),

(4._.2o)

(4.3.21)

bji = I _i(w/oj)sj(w)g(;i/u_jj)dw (4.3.22)

The constant _2 is chosen to be greater than i/ujj.
J

The part of the test function which we want to estimate is inLj(wj).

From the definition of Lj we have the expansion

O0

Sj(wj)Lj(wj) =_2_/ujj _

i=O

i

j dji _i(wj/Tj) , (4.3.23)

and can write for (12)

I

I

I

I

I

I

I

_ _ _)in(Tj(wj,Wo) ) = in(pj/Po ) + i (ujjwj - Uoo
2

+ in(sj(wj)L (wj)) - in(so(wo)Lo(wo))

- in sj(wj) + in So(Wo).

The error in the estimate of (24) is

A A A

inT j-lnT jn=In (sjLj )-in(sjLjn) -in(SoLo) +in(SoLon) ,

which we can also write as

(4.3.24)

(4.3.25)
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A

inTj_inTjn = in <]' + s°L°n-s°L°)
SoL o

A

_i s.L. -s.L. )
- in + .] ,In .7 .1

sjLj

(4.3.26)

In analogy to section 2.5, we take the estimate of sj(wj)Lj(wj) as

q(n)

sj(wj)Ljn(Wj) = _" _jin qOi(wj/Yj) (4.3.27)J

i=O

where the estimates of the coefficients

_j djin = pj

n

_=i

differ from those in section 2.5 only by the (l-pj)bji term.

If the sequence of random variables [Z_} is M-dependent and if R(t)

satisfies condition B_ then_ from Corollary 2.5.1_ the sequence of esti-

A

mates sjLjn converges in mean-square (uniformly in wj) to sjLj. The

rate is in2n/n with the bound given by (2.5.34). Since we have con-

vergence in probability_ we could again make a probability statement

concerning the convergence of Pen to Pe o

We remark that if the orthogonal signals yj(t) have equal energy

!

then ujj= ...=Uoo , and the fj(wj) are essentially the same. In this

situation we need only use the output of one filter to estimate the

_he fj(wj) would be identical if the signals were also equi-probable.
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coe fficie nts.

4.3b Bipolar Signals

Some interesting problems arise when we are testing between two

hypotheses and the signals are bipolar.

The signals Yo(t) and ym(t) are said to be bipolar (or antipodal)

if Yo(t) = -y1(t). In this case, we need only one matched filter as

vo(t) = -vz(t). The density function of the observation (equation

(i_)) is

f(Wo): po f g(Wo-_;i/_)d_(z)

+ p_ f g(Wo+_;i/J_oo)d_(_)
(4.3.28)

since UOO=LIII=-LIoI .

becomes

Let

With Wo= -wl, the test function, as given by (i0)

fg(Wo-Z;#qUoo)d_(z)
= P-k (4.}.29)

T(w°) Po
fg(Wo+Z; l/U'_oo)dC_(z)

Zo(Wo) = So(Wo) f g(Wo-Z; i/U_oo)d_(z)

Z1(wo) : So(Wo) f g(Wo+Z; i/ _oo)d_(z) ,

(4.3.30)

where So(Wo) is defined as in (20). A procedure equivalent to compar-

ing T(Wo) to a threshold of one is to evaluate

I



I

I
I
I
I

_(wo) = p_ L_(Wo) - PoLo(Wo) (4.3.31)

and compare it to a zero threshold.

We need to assume that d_(z) _ d_(-z). If d_(z) = d_(-z) then

_l(Wo) = _o(Wo) and there is no basis for a decision. Hence, if the

density function exists (d_(z) = _'(z)dz), we assume that it is not

an even function.

I

I

Multiplying (28) by So(Wo) results in the expansion

J )JSo(Wo)f(Wo) = _, _o dj(Pl+Po(-i ) _j(Wo/Yo) (4.3.32)

I while the test function can be written as

I _Jodj o ) qOj(Wo/7o) "T(w o) = (Pl-P (-i) j (4.3.33)

I

!

The coefficients d. are defined in (21). We have used the property
J

that the Hermite functions are even or odd functions (depending on

whether the index j is even or odd) to obtain (32) and (33).

I

I

I

I

We observe from (52) that if Pm# Po' there is no problem in

estimating the product (_Jdj) which is then used to estimate _(Wo).

For bipolar signals, however, it is certainly reasonaDle to take

1 Then, (32) and (33) become
Po = pl : _ •

oo

2 "So(Wo)f(w ) : 2j d _ (Wo/7o)
0 0 2j 2j

j=O

I _ 2j+I
&a

T(w°) = L _o

I j O

(4.3.34)

d2j+1m2j+l(Wo/7o)
(4.3.35)
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Hence, we can only estimate the even coefficients, while the test func-

tion depends on the odd coefficients.

There is one set of circumstances where this difficulty can be

i
overcome. Suppose the density function of z exists,

d_(z): _'(z)dz,

and that _'(z) is L2.

only take on positive values, (_'(z) = 0 for z < O.

of (_'(z) uniquely determines the odd part:

oo

, _'(z)+_'(-z) _,e(Z) - 2 : d2j_j(z/ao)_-
j=O

Further, assume that the random variable z can

Then, the even part

(4.3.36)

and

c_' = O_'(z)-O_'(-z) = OY(Z) for z > 0
o 2 e

:-O_'e(Z ) for Z < 0 .

From (30) and (31), the test function can be written as

--00

The procedure, then, would be to obtain estimates of the coefficients

i
Operating in the supervisory mode, there is no difficulty since we

can estimate all the coefficients, _ven and odd, by estimating the

marginal density fo(Wo) or fl(-Wo). The even coefficients of fo

and fl are equal and the odd coefficients differ by a minus sign.
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2j
d2j by estimating (_ dej) in (34), and then dividing by _2j. The

estimate of the test function would take the form

q(n) 4-oo

_n(Wo) = s(w o) d2j n _ _ g(Wo-Z; i/U_oo) q02j(Z/qo)

j=O o

0

J •
--oo

(4.3.38)

The convergence of (38) to T(wo) is not given by the in2n/n rate since

we are, in effect, estimating G'(z) and not f(x). As indicated above,

!

using the eigenfunction representation, we can "pick off" the djs.

The L2 series can also be used to estimate G'(z). The estimation

procedure, however, is more complicated. This will be discussed in

section 4.4

4.3c Arbitrary Signals

The distinction between the supervisory and nonsupervisory modes

is more marked in the case of general signals. Define the constants

(_. U..

Oz ujj

u.. _.. -i

_ij = _J Jz
u.. _.@ +i

jj jz

(4.3.39)

7ji

(ujjej_-l)(ujj_j_+l)

u.ff _ ._
jj jz
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and the functions

2

i .i .i .i

sji(wj) - z exp 2 2 2
7ji _ji

(4.3.40)

where the indices i,j = O,I...K. The (K+I) qj are chosen so that

q.. > u.. From (2.5.6), we have the expansion
jm jj

or_

CO

sji(wj)g(wj-y; i/4ujj)=

k=O

sji(wj)g(wj_ z ji ; i/u_jj) :
U..

JJ k=0

k

_ji q_k(Wj/Yji ) q°k(Y/qji)

k

_ji _k(Wj/Tji)_k(z/_j)

(4.3.41)

Defining the coefficients

+oo

djk = _ q0k(Z/qj)dg_(z) , (4.3.42)

the density function of the output of the j-th matched filter (equation

(15)) becomes

K

fj(wj ) = _ Pi

i=O

O0

l _ j
ji(wj) ji djk mk(Wj/Tji)s k=O

(4.3.43)

It is the djk which are needed to estimate the unknown part of the test

function, inL.(w.). Repeating the definition of L.(w.),
J J J J

Lj(wj) :42_/ujj J g(wj-z;i/_u..)d_(z) ,
JJ

(4.3.11)

I
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we use (42) to obtain

oo

J2_/ujj _ kLj(wj) : sjj(wj) djk _jj mk(Wj/Tjj) (4.3.44)
k=O

The difficulty in estimating djk is that the unknowns in the overall

density function no longer appear as the coefficients of an orthogonal

expansion. Of course, in the supervisory mode, there is no need to

consider the overall density function fj(wj). By working with the in-

dividual densities in (43), we have the usual orthogonal expansion and

can update the estimates of djk at each stage. For the nonsupervisory

problem, we can use a procedure analogous to that given in section 2.6

to obtain approximate estimates for a finite number of the djk. By

defining

K

_jk(Wj ) : Pi sji (wj) _jimk(Wj/Tji)' (4"3"45)

i=O

fj(wj) can be expressed as

oo

fj(wj) = _. djk _jk(Wj) (4.3.46)

k=O

It can be shown that the functions _jk(Wj), k=O,l,...J-l, are linearly

independent. Then, we can construct (as in section 2.6) a set of func-

tions _j-[k(wj) which satisfy

+_

*jk(W)*jm(W)dw = O, mCk (4.3.47)

= i, m=k

I
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where k,m=O,l,...J-l. As an estimate of djk , k=O,l,...J-i, we can take

n

djk n = n * )" (4.3.48)

_=i

These estimates are biased

E(djkn) djk = _ d..j 1 /_j<(w)_ji(w)dw .

i =J -_

(4.3.49)

The variance calculations are unwieldy and we will not discuss them.

The difficulties encountered in the case of arbitrary signals carry

over when the received waveform is

x(t) : N(t) + Z(t)Yi(t); _ <_ t <_ (_+i), i : O,...K. (4.3.2)

We define the time samples z(tkl)Yi(tkl)..., as zklY_kl,_ and let -mu"be the

vector of time samples. The density function of the k samples, given

that the i-th hypothesis is active, is

%_..°j_]""] _#_---_;_)_j(_{_)...

Jl. • "Jk

ejk(uik/Yik%)

dUil.-.dUik

Yil...Yi k
(4.3.5o)

For simplicity, we have assumed that the density function of (_(z) exists

and is L2, and have defined the coefficients as

I



I
I
I

I
I
I

I
I

I
I

I
I

I

I
I
I

I
I

189

djl...jk = "''f'''fqOjl(Zl/ql)''" qOjk(Zk/_k)g_'(Zl,.-.Zk)dZl...dzk

(4.3.51)

The test procedure involves evaluating each of the fi(_) and then com-

ps.ring them as in section 1.2.

If the noise samples in each interval are independent, A is disgonal

and the problem is a direct extension of the one above. For the super-

visory mode, each si(_)fi(_) can be expressed in an orthogonal series.

In the nonsupervisory mode, (50) is summed over i and one can obtain

the k-variate analog of (46).

When A is not diagonal, fi(_) can not be expresse_ in an orthogonal

series with the djl...j k defined as in (51). Be redefining the coef-

ficients so as to depend on the index i (let _l...q k depend on i), one

could express each fi(_) in the same orthogonal series. Then, in the

supervisory mode, the coefficients could be estimated as in section

3.3.e. For the nonsupervisory mode, this representation would only

be useful for the case of bipolar signals.

4.4 UNBOUNDED LOSS FUNCTIONS FOR THE CASE OF BIPOLAR SIGNALS

For the case of equi-probable bipolar signals, we had to assume

that the random variable Z could only take on positive values in order

to consistently estimate the test function in the nonSupervisory mode.

Under the same assumption on Z, we now give another formulation which

is illustrative of a class of problems.

I
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Equation (4.3.28) can be written as

-%o

f(Wo)=f g(Wo-Z_i/_q_oo)(d_(z)-d_(-z)2 ')
--0(3

(4.4.1)

The output of the matched filter is Wo=NoTZ , depending on whether Yo(t)

or yl(t) = -Yo(t) was transmitted.

sample with variance equal to 1/u .
oo

N O is the (derived) gaussian noise

Deciding between Yo or -Yo is

equivalent to deciding whether the prefixing on the (non-negative) ran-

dom variable Z is + or -. Rewriting (i) as

+_

f(wo)=fg(wo-Z_l/_J_oo)d_e(Z), (44.2)

we can think of Z as a random variable with the symmetric distribution

_e(Z). Z will be positive (negative) only if yo(-Yo) is transmitted.

Hence, the decision problem is equivalent to deciding whether Z is

positive or negative.

If Z is close to zero, it is more difficult to distinguish between

the two hypotheses° The penalty of an incorrect decision should, ac-

cordingly, be small. On the otherhand, if Z is large and we make an

incorrect decision, the loss should be high. As one possible loss

function_ we take the loss equal to the magnitude of Z for an incorrect

decision and equal to zero if we decide correctly.

Using the notation of sub-section 1.2d (with z and w o in place

of k and x), the loss function L(t(wo),Z ) is:

!
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L(O,z) = 0 if z > 0

= -z if z < 0

L(l,z) = z if z > 0

= 0 if z<O

(4._.3)

We announce Yo(t) if t(Wo) = 0 and -Yo(t) if t(Wo)= _.

Defining

b(z) = L(O,z) - L(l,z) = -z , (4.4.4)

from (1.2.49), the test function is

+_

T_e(w°) = 7 b(zlg(w°-z_l/Juoold_e(z)
--OO

The procedure which minimizes the average risk is to set

t(Wo) :i if TGe(Wo) _> 0

=0 otherwise.

Substituting for b(z) yields:

TO_e(W O) = -/zg(Wo-Z;i/uV-_oo)dC_e(Z )

.-CO

= _ (Wof(Wo).+ z____f'(w ))u o
oo

(4.4.5)

Hence, the test function does not depend explicitly on Ge(Z ). However,

we now require estimates of the derivative of f(Wo). To estimate the

derivative, the techniques given in Chapter 2 are applicable. By dif-

ferentiating the estimates of f(Wo) _ we can obtain consistent estimates

I
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of f'(Wo).
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As would be expected, convergence of these estimates takes

place at a slower rate than the estimates of the density function.

Then, assuming fz2d_e(Z)< _ , Corollary 1.2.4 can be used to bound

the difference in risks.

If b(z) is a k-th order polynomial in z, the test function will

2
depend on f(wo) and its first k derivatives. Even when the test func-

tion can not be written as a polynomial, the problem of finding con-

sistent estimates of T_e(Wo) is, in principal, easier than the situa-

tion encountered in the last section for the case of arbitrary signals--

the point being that here, the density function under either hypothesis

(Z > 0 or Z < 0) is the same and is given by (2). Consequently, we

can estimate _e(Z) and form an estimate of the test function by taking

_%n(_o>^f_ ^: (_) g(Wo-Z;1/_Uoo)d_e_(Z) (_.4.6)

We briefly discuss how to estimate the distribution or, for sim-

plicity, the density _$(z). We assume _'(z) is L2. Using the eigen-
e

function representation, we first form the estimate of _Jdj as in

section 2.5, and then divide by the known _J The estimate of _(z)

is taken as

i
For the method of 2.3, we have verified this only with the gaussian

kernel. To use the eigenfunction representation, we estimate the

product S(Wo)f'(Wo)o

2For a discussion of this point, and other densities (besides the gaus-

sian) which have this property, see [37].
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q(n)

_'en(Z) = I _j2J (z/(_1) '

J

Using the L2 series for f(x), we define the estimate implicity by

+oo

fn(Wo) = g( Wo-Z ;i/Uoo)(_'en(z) dz
--00

q(n)

= I AJn q0J(w°/_l)

j=0

(4.4.7)

Since the Hermite functions, aside from a constant, are their own Fourier

A

transforms, letting Mfn(V ) be the transform of fn(X), we obtain

q(n)

_n(V) _ _ (-1)j/2^= ___ ajn q0j(qlv) • (4.4.8)

j=O

A

Letting _en(V) be the transform of G' we haveen _

(v) +7/2u
MXen : e oo Mfn(V) (4.4.9)

To form the estimate of _$(z), take the inverse finite Fourier trans-

form of (9),

+B(n)

A 7 +v2/eu°°-ivzC_en(z) = e Mf_v) dv ,

-B(n)

with Mr(V) given by (8).
n

Both of these representations for C_(z) lead to consistent estimates

and, under appropriate conditions on b(z), the sequence of test functions

defined in (6) can be shown to be consistent.
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CHAPTER 5

SUMMARY

We have studied a particular empirical procedure and applied it to

some problems in communication theory. The procedure utilizes all past

observations to form an estimate of a test function which is then eval-

uated using only the present observation. This procedure is neither

optimum nor asymptotically optimum when the sequence of observations is

assumed to be dependent. Whether or not the sequence of observations

is dependent, we have shown that if the sequence of test functions con-

verges in mean-square to the one-stage test function, the difference in

the risks (for the case of a bounded loss function) is dominated by a

quantity proportional to the mean-square error in the estimate of the

test function. These calculations (section 1.2), although straightfor-

ward, appear to be new.

In estimating the density function f(x) from the sequence of de-

pendent observations, we are able to dominate the mean-square error and

hence, specify the rate of convergence of the estimate. The key rela-

tionship is the Mehler formula (2.2.12), or more generally, the Barrett-

Lampard expansion (2.7.1). It appears that this particular application

of the expansion has not been used before.

We have presented three methods of estimating the density f(x).

Varying amounts of information are required to apply and specify a rate

of convergence for each of the techniques. A summary of assumptions
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needed and rates of convergence are given in section 2.7 and at the_ end

of 2.5. Of the three methods we have presented, the most interesting

is the eigenfunction representation. To the best of our knowledge, this

approach of estimating a density function obtained from a convolution

and the particular solution of the eigenfunction problem in section 2.5

have not appeared in the literature.

The communication problems we have considered are those in which

the unknowns enter linearly into the overall density function. In section

4.2, the unknowns consist of a finite set of parameters. In the other

problems, an arbitrary distribution is taken as unknown and expressed

in terms of a countable set of linear unknown parameters and known func-

tions by using either of the two series methods.

The series methods we have studied may also be useful for other

purposes. We have mentioned two; estimating a k-variate density func-

tion with the L2 series (2.7 and 3.3b) and using the eigenfunction rep-

resentation for the detection of random signals in gaussian noise with

the number of terms to be used in the test function determined by a

sequential procedure (4.1b).

|
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APPENDIX A

THE HERMITE POLYNOMIALS

In this appendix_ we review the definitions and properties of the

Hermite polynomials and develop the relationships which we will need.

Common practice has been to use the notation Hen(X ) for the poly-

nomials associated with the weight function e -x2/2
, and Hn(X ) for the

-x 2
polynomials associated with the weight e . This is the notation which

we will adopt. The polynomials are related by (Erdelyi, [12] p. 268),

n

Hen(X) : 2 2 Hn(X/_) (A.I)

Hn(x) -- 2 n/2 Hen(_X). (A.2)

A.I THE POLYNOMIALS Hen(X )

%
From Cramer, [i0], page 133, we define

x2/2Hen(X) (-I) n e ( )n -x2/2= e (A.3)

The first five polynomials are:

Heo(X) = i

Hel(x) = X

2
He2(x) = x - 1

3

Hes(x) = x-3 x

He4(x) = x4-6x2+ 3

(A.4)

The orthogonality relation is
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I +_ 2
x

i /e-2- He (x)He (x)dx
n m

I
One generating function is

I oo

-t2/2 + tx = f tve v'. Hev(X)

! 0

I
r2222i _ LP x +p 7 -2 px

I e L 2(I-P2)I-P2 O

and another particularly useful expansion is given by

v

Hev(X ) Hey(Y)v t. '

I with (A.7) holding for IPl < 1.

I

I

We define (see Table of Symbols)

g(x-m;q) = g(_)
1 - (x-m)2

= e

I We have from (A.3)

n

I d g(x-m;o) (-i) n g(X-m)Hen(X-m )dx n = on _ -_- ,

I
I

I
I

and from (A.5)

+oo

x-m (x-m)Hen(--_-) He n -_- g(_) dx

A.2 THE POLYNOMIALS Hn(X )

From Erdelyi, [12], section 10.13, define:

I

(A.5)

(A.6)

(A.7)

(A.8)

(A .9)

(A.IO)

I
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n x 2 k n _x 2Hn(X ) = (-1 e ( ) e (A.11)

Hn(X ) is also given by

[ni2] 2x)n-2mHn(X ) = n'. (-l)m(
m'.(n-em)'.

m=O

(A.Z2)

where [n/2] denotes the largest integer n/2 or (n-l)/2.

ing five polynomials are:

\

Ho(x) : i

Hl(x) : 2x

H2(x) -- 4x2 -2

The correspond-

Hs(x ) = 8 x s - 12 X

4
H_(x) = 16 x - 48x 2 + 12

(A.13)

The orthogonality relation is

+_
2

-x nH (x) _(_) e dx : 2 n'.g_ 5
n mn

--00

(A.14)

and the corresponding generating functions for these polynomials are:

co

-t2+2tx 7, tn= n-_. Hn(X)

n=O

(A .15)

/-%2+ ap2 2 pxy___x _7 - (p/2)n
e i_@2 = L n'.

n=O

Hn(X) Hn(Y), IPJ
< 1 (A .16)

(A.16) is called Mehler's formula.

For the weight function

x 2

2(x/o) _ i - --g e _2
(2_)_2
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we have from (A.II)

n

g_(x/_) : (-z)n_n Hn(_) g2(x/°) (A.17)

and from (A.14)

4=o

f _ -X2/O 2 nHn( ) Hm(_) e dx = 0 2 n'._-_ 5 .mn
(A.18)

In terms of the g(x/a) notation, the orthogonality relation becomes

+_

f n: _ (A.lg)Hn(x/a)Hm(X/O) g2(x/a) dx 2 nt

._ JK_ mn

The sequence of functions given by g(x/o_Hj(x/o) is known to be a

complete orthogonal system [38].

A. 3 THE EXPANSION OF THE BIVARIATE GAUSSIAN DENSITY FUNCTION AND A LEMMA

An expansion for the bivariate gaussisn density function is easily

I

I

i
I
i

I
I

(x2+#)
obtained by multiplying (A.7) through by 1 e 2 and then

2_[o I o 2

substituting x = x__ , y = y-_ . In terms of our g(x) notation , the
OI O 2

result is

2_ O10e (1_02) 1/2

[(x-m_)2

I _ °z2
exp -

- 2p

(x-mz)(_-m_llo_p2zo2 + (_f-m2)20221

oo

= g(--_-
n=O

pn _
n" Hen(_) Hen(_2_)'JPl< 1 . (A.20)

This result can also be derived from the bivariate gaussian characteristic
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function by expanding the cross-product term in a power series.

integral in the inversion formula then becomes two single integrals.

We denote the bivariate guassian density function by

ge(x-ml,y-me;al,o2,p ). If the standard deviation of both variables is the

same, we designate the density by g2(x-ml,y-me;s,p).

When integrating the bivariate density as given by (A.20), we will

want to interchange the double integration and summation. This is easily

justified by

Lemma A.l: With IPJ < l, it follows that

The double

1

ij2ge(xl,x2;;_l_2,p)dxldxe

Yl j[e2on/= _. g(xl/_l)Hen(Xl/_l) dXl g(xe/s2) Hen(X2/_e) dx2

n=O -oo -oo

(A.21)

Proof: Let

oo n

G(xl'x2) =Z _n'

n=O

1Hen(x_./_J.)I 1Ren(X2/O2)Ig(xj./c_l)g(x2/a2)

(A.22)

Then by the Lebesgue monotone convergence theorem,

Yl Y2

f f G(Xl,X2)dxldX2

--00
--00

iStratonovich, R. L., Topics in Theory of Random Noise, Gordon and Breach,

N. Y., 1963. Translated from the Russian by R. A. Silverman pp. 41-42.

i
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$THe n( x2 I_2)Ig( x2/_2) dx2

--CO

(A.23)

I

I

!
i

Using (A.IO) and the Schwsrz inequality, we obtain

1He(x_/o',)lg(x,/o_)dx_<_ He_(x,/o,)g(x_/o,)dx_ g(x_./ol)dx

(A.24)
< ,,/-j=_.

Since1oi< 1,(A.23)isdominatedby

i

i

Yl Y2

$$ 7, iG(x',,x2)dxldx2<_ Iol = l-lol
_ n=O

N n

Now define gN(xx,x2) = _. p-- g(xx/s,) g(x2/sa)HenCxl/_l) Hen(X2/_2).
n=0 n'.

Clearly, gN(xl,x_--_g(xx,x2;_,p) pointwise. For all N we have

(A.25)

i

I

I

gN(Xl,X2) -<_G(xz,x2) which we just showed was integrsble.

follows from the Lebesgue dominated convergence theorem.

(A.21) then

A.4 MISCELLANEOUS RELATIONSHIPS

From Erdelyi, [12], p. 193, we have the fact that Hn(x) is either

i an even or odd function, depending on the index being even or odd,

i Hn(X ) = (.i) n Hn(-X ) . (A.26)

i From the same page we have:

i %+l(X) - 2XHn(X ) + 2n Hn.l(X) = 0
(A.27)

! d

--dx Hn(X) = H'n (x) = 2n Hn_l(x ) . (A.28)

1

!
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A uniform bound (in x) for the Hermite functions was given by Cramer.

From Erdelyi, [12], p. 208, or Sansone, [38], p. 324, Cramer's bound is

-x2/2
e IHn(X)I < cz_ , (A.29)

where the constant cl = 1.086435. Using (A.I) a bound in terms of the

Hen(X ) polynomials is

_x2/2 -x2/4
e IHen(X)l <__ IZ-Ien(X)l < c_.G (A.30)

The bound has been improved with cz replaced by 21/4/_ .1

i
Reuter, G. E. H., "On the Boundedness of the Hermite Orthogonal System,"

Journal of the London Math. Society, vol. 24, April 1949, pp. 159-160.
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APPENDIX B

EVALUATION OF SOME INTEGRALS

In this appendix we calculate a number of integrals involving the

Hermite polynomials. For our purposes, the most useful result is given

in equation (B.IO). Equations (B.15) and B.17) are of interest and have

been included for the sake of completeness.

We shall evaluate the integrals starting from an integral appearing

in Tables of Integral Transforms [13]. By way of verification, we also

indicate different (and sometimes more direct) methods of obtaining the

results.

From Erdelyi, et. al.,[13], page 290, number 17:

exp -- (x-y) Hen((Tx)dx = (2_) l-C_2) He

-oo 2 n

(B .i)

It is easy to verify this integral for n=O,l. Then, integrate (B.1) by

parts and use the relations

d

_x Hen(O_x) = nOd-len_l((Lx)

(Xx Hen((_x ) = Hen+l((Xx ) + n Hen_l(O_x)

(which are derived from (A.27) and (A.28)) to express (B.I) in terms of

integrals involving polynomials of order n-I and n-2. (B.I) is then

2O3
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i

i
I

II
II

I
II

I
I

2O4

verified by induction. The simple substitution x=E/o, y=_/o gives

+oo n

I g(_--_)Hen(_-----)d_ = (1-_) 2 , (B.2)

where
again g(_) denotes the gaussian density with mean _ and standard

deviation o. Using the relationship between the two types of Hermite

polynomials, (A.I), the integral is expressed in terms of Hn.

I g(_) Hn (_--_)dx-(1-(_') n/2 Hn[_o(_S)l/21
--oo

(B.5)

With x=_-m, this becomes

+_

I n12
_: o nLJP o/

(B.4)

We now want to evaluate the following integral.

+_

Ii = I Hn(_im )g(X__)g(X-m2)d x
01 02

--00

(B .5)

Use the relation

t x-ml

g_-_-_ g(%_) g(,m_=_ ) ,x-ab_,= gt T ) ,
W oi +o_

(B .6)

where

s = m__,_.+]_

(_i 02

2 2

b 2 = q& qe

(_12 +(_22

!
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and Im becomes

I 1 =

+oo
f_ 2

g( mz_ma 2) j H (x-ml) g(--_)dx .

--00

(B.7)

Make the following identifications

y = ao2- -ml

q = b

4-2b
(_ --- --

dZ

and substitute into (B.7) o

ii = g( ml-m2 )y Hn F(_(x-ml) 1 g(_)dx (B.8)4_2+d-----_.-_ L4-2_, b

This integral is given by (B.4)

I1 g( ml-m2 )(I-C_2) n/2 I_2 21
= Hn O_ (B °9)

_3+_22 o(l-_)z/

Substitute for y,a,_, and then for a and b. The result is

Ii = 7 Hn(_iml)jx-ml__.._l)_ g(_-_) dx

= g( m2-ml )_d12-"d22 _ _ __ d 1(_-.--ml-_) -__
d 12 +d_: h_ 12 +02 2..] Hn

(S.lO)

This integral exhibits a type of reproducing property which we will

find useful in this study. The property which we refer to is the fact

that the (gaussian) average of a Hermite polynomial of order n and its

associated gaussian weight gives a Hermite polynomial of the same order

I
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2o6

and s gsussian weight, with the resulting two functions having different

arguments.

For the case where _I=G2, by using (A.12), (B.lO) reduces to

n

g(_maz_) (_-m_)
Ii = _ 01 _l

(B.ll)

As an alternate derivation, equations (B.IO) and (B.II) can be obtained

by using a form of the Weirstrass transform (Bilodeau [4]). Briefly, this

method involves defining the transform of _(y) by

+oo R.

1 J -(x-y) (B.12)_(x) : _-_ e ,(y)dy
--00

and noting that (under suitable conditions on _(y))

dn I _I -_ e _y2

-- 7(x) : -p- Hn(Y )
dx n

x=O

*(y)dy. (B.13)

The evaluation of (B.12) is carried out by completing the squares of the

product of appropriate guassian weights.

A generalization of (B.10) is the evaluation of

+_

/ Hn(___Ix-ml) g(_) g(X__)dx_3

--00

(B.14)

We use (B.6) to manipulate (B.14) into a form so as to use (B. IO). The

result of this straightforward procedure is:

f _o_ _ _l_x
--00

|
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ao7

_n= g( _-m_ ) 22(_2-_2)+_2(_2-a22)

Ha L_ a22+(F32 %/(_22( (712-(732)+(72 ((71a-U22)

(B.15)

The polynomials Hen(X ) also exhibit the reproducing property analogous to

(BolO) o For the integral given below, set _I =_g2 _2 and use (A.I):

He(y-x_)g(_) g(y-X_)dy
n o2 a 3

-co "_o
n

--f= 2 2 Hn (y-x2) g(y-x2) g(y-x_)

UI U2 U 3

(B.16)

This integral is given by (BolS). Upon substituting back for _i and He

we obtain the desired result:

file (y-x_)g(y-x2)g(Y-_)dy
n q2 qm q3

:_ _2_I;_g( x_-x2)HenF,X_-X_7
L_+_j J_2_+_# L#_+_._j

(B.17)

Here, the argument of the resulting gaussian weight and Hermite polynomial ;'

are the same (Cfo (B.IO))°

This result can also easily be obtained from the integral

_o

and the following relationships:
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2o8

d n n

dx_n g( .x_-x2 ) = (-1) n g(_ ._ _J,'x_-x_ )
VC22+C32 ( C22+C32)_ _/C22+C32 )hen _/0-22+0-32

d n

--_ g(y-x_)= i___g(_) He (Y-_)
dx 3 C 3 (/3 n n a s

Hen(-y ) = (_i) n Hen(Y)

Another integral which we will need is

12 =$$g(xl-ylJ5l)g(xa-Ya;ql) ge(yl-zl,y2-z2;a2,p)dyldy2 (B o18)

where g2(Yl-zl,Ya-Za;P) is the bivariate gaussian density with'standard

deviation q2 and correlation coefficient p. This integral can be evaluated

by using (B.17) and the expansion (A.20). We note, however, that (B.18)

represents the density function of the sum of two independent gaussian

vectors. The resulting probability density function, which of course is

gaussian, has a covariance matrix equal to

C1 LPC am J = pc2 e uz2+c22J
2

Hence_ defining

(B of8) is given by

2. 2 2

q2
= p

U22+(_ 12

(BoI9)

I2 = ga(xl-zl,xa-z2;7, _) . (Bo2O)
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APPENDIX C

THE GAUSSIAN KERNEL

By specializing the kernel in section 2.3 to K(y)=g(y;l), we are

able to perform some of the required integrations._ This permits3 for

example3 an exact expression for the bias and second moment of the

estimate. It also leads to sharper bounds on the variance expression.

C.I THE UNIVARIATE CASE

From section 2.33 the estimate of the density function is

n

Afn(x) = 1

nh _=i

Take K(x) = g(x;l) = i e-X2/2. The estimate is

n

3 _ g(x-X_h)
_=i

The mean value is given by

(c.1)

E_(x) : Eg(x-X;_)

: /g(x-y;h)/g(y-z_)d_(z)dy

--/g(x-z_)a_(z)° (C.2)

The bias in the estimate is then

E (x) - f(x) : (x-z_k/_+h ) - g(x-z; ac(z)o(Co_)

209



I

I
I

I
I

I
I
I

I
I

I
I

I
I

I
I

I
I

210

In (2.3.20) 3 we defined the quantity

\T} \h /

_m-_( Yl, Y2) f(Yl) f( Y2)_
dyldy2.

This expression, the third part of the variance bound3 led to the

1/nh 2 factor. Using the gaussian kernel we will be able to eliminate

the 1/h 2 term. Substuting for the kernel we obtain

(c.4)

Designate the first part of this expression by Qm-,e_l"

(Y_3Y2) and interchange the y and z integrations.

Write out fm-i

g( x- Yl; h) g(x- Y2; h) dyldy2 • (c.5)

The double integration has been evaluated in the previous ap-

pendix. Define

7m-, Ore_ g
o2+h 2

(c.6)

I
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Then, from (B.20) ,

Qm-_,l : / i d_(z!)dC_(z2)g2(x-zl'x-z2;_'_-Z)"
(Co7)

The second part of (C.4) is just the square of (C.2).

(C.7) and (C.2) we have,

Combining

a_(zDd_(z2) (x-z_,x-z2_,___) -
Z ! Z_

(Co8)

Noting that I%__I._IOm__l<l for m_, we use the Meh!er formula and

Cramer's bound to obtain

, I_h_ i:7m-_1o_ h2Ipm__ioJ

i_l_m__i2_ 1-1Om__l2,_o

which is the result quoted in section 2.3, equation (2.3.24).

Note that we have taken the [Z£] as independent° The extension

to M-dependent variables is straightfowardo An additional term is

added to Qm_Jh 2 which3 after performing the y integrations, is given

b_

( c. lo)

This contribution to the V(fn(x)) expression can be bounded by

,-,2_J(l-p.)

I
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The result in (C.5) to get exact expression for
enables us an

i the second moment of the estimate. Using this and essentially (C.2),

I we have

i E[_n(X ) ]m =

t_ _ _ _=i m=_+l k__

i n n
+_ I I f f_o_,_z_,_<x_z_,x_z_o,___)._c._,

D _=i m=g+l

B C. 2 MEAN INTEGRATED SQUARE ERR0_

In section 2.3d, we stated that the MISE was = 0(i/n4/5). We now

D obtain this bound assuming the [Z£) are independent and that the autocor-

relation function satisfies condition B. From (C.2) and (C.II), the

MISE is :

| ^ 2
Jn : E/ (fn<X) - f(x)) dx

! F-----'-

I _ nh2X/_-7 z
n n

+ 2 1 1 /zl z_2 g2(x-z_'x-z2;_,Tm_,'d_(z1'd_(za'

_=l m=_+l

!

!

!
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I _ 2 z_ g(x_z_; o)d_(z_) z_2 g(x_ z2 __) dC_(z2 )

?

I + _i_2 g(x- Zl; 0)g(x- z2; a)dG(Zl) dG(z2) •

!
Use (B. 6) and the equality

I g2(x-zl,x-z2;_,_._)=

I g(x- (Zl+Z2) ; 2_g(zl-z2;6_

I
l

I
I
i

to perform the x integrations. We obtain:

Jn =

f
1

J dG(z)
nh2 _'_-- z

n

+_ Z Z ff
_'2 Zl Z2

_=i m=_+l

g(zl-z2;_) riG(zl)dG(z2)

+ z_l.z._2 g(zz-z2; 2V_-_°)dG(zl)dG(z2)"

9 . J X _Use P_r_ev_i'_ r_±_o±u.

I

I
I

where

,fZl ,fz2 g( zl-z2; o)dG(Zl)d(%(z2)

1

f . -_ o2v2= __i , qgob(V)%(v)e dv,

2_

' - jvzCpo_(V) = . e dG(z),

(C. 12)

(c.i3)

(c.14)
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to write

2_Jn =

n n

nh n2
_=i m=_+l

j Iq_dv)i2e'V2_2(1-z)dv

- 2 ,/ lq)_(v)[2e-1/2v2(2a2+h2)dv

+ f i_c_(',)i_ -_e dv. (c. :]-5)

Add and subtract

(l -±)_ f [q)c_(v) [2e-V2( o'2+h2)
n

dvo

Regrouping terms yields:

2 _Jn = v/_

nh
L f lq)CZ(v) i2e-v2(2+h2)
n

dv

___,2(o2+h2)+ 1%(-41a
_ 3. v2(2o2+h 2)

- 2e 2 + e dv +

n n

+,TT /' ei<(_)T_,re-'_I_-__- -'_ _.
n 2 / ' / ' J _ m --J

_=i m=_+l

( Co 16)

Using I_'_z(v)I-_ 1, the second expression on the right hand side is

- !
bounded byq_-x/q. For the third expression, it follows that as n_

h(n)--+ 0 and

e-V2( a2+h2)_ 2e-1/2v2(2_2+h2) +

-@_
---+ e (5 v4h 4 +

m

8

22}
--V (/

e

O( h e) )o
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Hence, as h _ O, the third expression of (C.16) can be bounded by

19 v_-7oSh4"

8
The last expression of (C.16) is Just slightly more difficult to

bound. Substitute for 6 and 7m_2, and bring the summations inside the

integral

n n

2__ f e -v2(O2+h2) ,q_ (v) l _ _ (e +v202Om-! -1)dv.

n2 l_l m_L+l

(c.17)

Expand the exponential in its power series and let T--m-l. The double

summation is then dominated by

n n

l=l m=l+l

n

T=I j=i j :

j n

= _ (+ve°e) _ (m-,)0T -_

.i=i .j.' T=I

oo j n

Z-_n _ (_ _) 0Tj . (c.18)

j=i J '_ _=i

Under condition B, we have the bound _ IDTI_-B (see 2.2.53 ). Hence,

T=I

(C.18) is dominated by

J

Z +v2o2nB (ve 0`2) _-nB e .
2 2

j=l J'

I
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Substituting this result into (C.17), we obtain

n n

e va°aOm" ! 1 _

n2 l=l m=_+l

____2B_f l_(v)i_ e-V2h2dv

n

2Ba

n h

Combining all the bounds, we have

s4 3j _ i F i + I+2Be + 15 0 h .
n L _

2,4-_- no :nh 8

As was the ease for the mean-square error (2.3.26), setting h(n)

gives for the mean integrated square error_

Jn : E f (fn(X) - f(x))mdx = O(i/n 4/9)

as n_.

(C. 19)

( c. 2o)

I
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